Stability and Performances in Biclustering Algorithms View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Maurizio Filippone , Francesco Masulli , Stefano Rovetta

ABSTRACT

Stability is an important property of machine learning algorithms. Stability in clustering may be related to clustering quality or ensemble diversity, and therefore used in several ways to achieve a deeper understanding or better confidence in bioinformatic data analysis. In the specific field of fuzzy biclustering, stability can be analyzed by porting the definition of existing stability indexes to a fuzzy setting, and then adapting them to the biclustering problem. This paper presents work done in this direction, by selecting some representative stability indexes and experimentally verifying and comparing their properties. Experimental results are presented that indicate both a general agreement and some differences among the selected methods. More... »

PAGES

91-101

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-02504-4_8

DOI

http://dx.doi.org/10.1007/978-3-642-02504-4_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033097916


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Sheffield, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Department of Computer Science, University of Sheffield, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Filippone", 
        "givenName": "Maurizio", 
        "id": "sg:person.07706215665.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Biotechnology, Temple University, Philadelphia, USA", 
          "id": "http://www.grid.ac/institutes/grid.264727.2", 
          "name": [
            "Department of Computer and Information Sciences, University of Genova, Genova, Italy", 
            "CNISM Genova Research Unit, Genova, Italy", 
            "Center for Biotechnology, Temple University, Philadelphia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masulli", 
        "givenName": "Francesco", 
        "id": "sg:person.013052261502.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052261502.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CNISM Genova Research Unit, Genova, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Computer and Information Sciences, University of Genova, Genova, Italy", 
            "CNISM Genova Research Unit, Genova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rovetta", 
        "givenName": "Stefano", 
        "id": "sg:person.015767137221.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767137221.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "Stability is an important property of machine learning algorithms. Stability in clustering may be related to clustering quality or ensemble diversity, and therefore used in several ways to achieve a deeper understanding or better confidence in bioinformatic data analysis. In the specific field of fuzzy biclustering, stability can be analyzed by porting the definition of existing stability indexes to a fuzzy setting, and then adapting them to the biclustering problem. This paper presents work done in this direction, by selecting some representative stability indexes and experimentally verifying and comparing their properties. Experimental results are presented that indicate both a general agreement and some differences among the selected methods.", 
    "editor": [
      {
        "familyName": "Masulli", 
        "givenName": "Francesco", 
        "type": "Person"
      }, 
      {
        "familyName": "Tagliaferri", 
        "givenName": "Roberto", 
        "type": "Person"
      }, 
      {
        "familyName": "Verkhivker", 
        "givenName": "Gennady M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-02504-4_8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-02503-7", 
        "978-3-642-02504-4"
      ], 
      "name": "Computational Intelligence Methods for Bioinformatics and Biostatistics", 
      "type": "Book"
    }, 
    "keywords": [
      "biclustering algorithm", 
      "bioinformatics data analysis", 
      "ensemble diversity", 
      "algorithm", 
      "experimental results", 
      "fuzzy setting", 
      "data analysis", 
      "specific field", 
      "biclustering", 
      "important properties", 
      "machine", 
      "good confidence", 
      "performance", 
      "stability index", 
      "deeper understanding", 
      "quality", 
      "work", 
      "way", 
      "definition", 
      "method", 
      "confidence", 
      "field", 
      "results", 
      "direction", 
      "setting", 
      "analysis", 
      "diversity", 
      "properties", 
      "understanding", 
      "stability", 
      "index", 
      "agreement", 
      "differences", 
      "general agreement", 
      "paper", 
      "problem", 
      "fuzzy biclustering", 
      "representative stability indexes"
    ], 
    "name": "Stability and Performances in Biclustering Algorithms", 
    "pagination": "91-101", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033097916"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-02504-4_8"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-02504-4_8", 
      "https://app.dimensions.ai/details/publication/pub.1033097916"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_26.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-02504-4_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02504-4_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02504-4_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02504-4_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02504-4_8'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      23 PREDICATES      64 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-02504-4_8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Na8c527d33f3d4120a13e24aad2b9f25d
4 schema:datePublished 2009
5 schema:datePublishedReg 2009-01-01
6 schema:description Stability is an important property of machine learning algorithms. Stability in clustering may be related to clustering quality or ensemble diversity, and therefore used in several ways to achieve a deeper understanding or better confidence in bioinformatic data analysis. In the specific field of fuzzy biclustering, stability can be analyzed by porting the definition of existing stability indexes to a fuzzy setting, and then adapting them to the biclustering problem. This paper presents work done in this direction, by selecting some representative stability indexes and experimentally verifying and comparing their properties. Experimental results are presented that indicate both a general agreement and some differences among the selected methods.
7 schema:editor N32961a87f08546bf893aac729b0d372c
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N19ad824b51e4422e9f2e742f3a57fa02
12 schema:keywords agreement
13 algorithm
14 analysis
15 biclustering
16 biclustering algorithm
17 bioinformatics data analysis
18 confidence
19 data analysis
20 deeper understanding
21 definition
22 differences
23 direction
24 diversity
25 ensemble diversity
26 experimental results
27 field
28 fuzzy biclustering
29 fuzzy setting
30 general agreement
31 good confidence
32 important properties
33 index
34 machine
35 method
36 paper
37 performance
38 problem
39 properties
40 quality
41 representative stability indexes
42 results
43 setting
44 specific field
45 stability
46 stability index
47 understanding
48 way
49 work
50 schema:name Stability and Performances in Biclustering Algorithms
51 schema:pagination 91-101
52 schema:productId N1d24672e2f4946ceba1cf9d638599ae4
53 N272082718c054b41905e6cac42423b96
54 schema:publisher N0a3d3234720a457fb2a23645c944e6ab
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033097916
56 https://doi.org/10.1007/978-3-642-02504-4_8
57 schema:sdDatePublished 2022-01-01T19:15
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N0dc324323ce146a694fe163c28b357b1
60 schema:url https://doi.org/10.1007/978-3-642-02504-4_8
61 sgo:license sg:explorer/license/
62 sgo:sdDataset chapters
63 rdf:type schema:Chapter
64 N0a3d3234720a457fb2a23645c944e6ab schema:name Springer Nature
65 rdf:type schema:Organisation
66 N0dc324323ce146a694fe163c28b357b1 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N19ad824b51e4422e9f2e742f3a57fa02 schema:isbn 978-3-642-02503-7
69 978-3-642-02504-4
70 schema:name Computational Intelligence Methods for Bioinformatics and Biostatistics
71 rdf:type schema:Book
72 N1d24672e2f4946ceba1cf9d638599ae4 schema:name doi
73 schema:value 10.1007/978-3-642-02504-4_8
74 rdf:type schema:PropertyValue
75 N272082718c054b41905e6cac42423b96 schema:name dimensions_id
76 schema:value pub.1033097916
77 rdf:type schema:PropertyValue
78 N27a985e0eb4048b3af696af6fba93fc4 rdf:first Nc65932f8121e4c56836903d08603cb40
79 rdf:rest rdf:nil
80 N32961a87f08546bf893aac729b0d372c rdf:first Naa1ac7f9306e46ef9c64e8e970a82a08
81 rdf:rest Nb6f6dd5dd6524597a0270835707910be
82 N85729915c05c462cbc31606ea2472285 rdf:first sg:person.013052261502.67
83 rdf:rest Nfd7d4c19c8b64299b909936dab6fcdb6
84 Na8c527d33f3d4120a13e24aad2b9f25d rdf:first sg:person.07706215665.03
85 rdf:rest N85729915c05c462cbc31606ea2472285
86 Naa1ac7f9306e46ef9c64e8e970a82a08 schema:familyName Masulli
87 schema:givenName Francesco
88 rdf:type schema:Person
89 Nb6f6dd5dd6524597a0270835707910be rdf:first Ne998abce54184774884f17a866677da1
90 rdf:rest N27a985e0eb4048b3af696af6fba93fc4
91 Nc65932f8121e4c56836903d08603cb40 schema:familyName Verkhivker
92 schema:givenName Gennady M.
93 rdf:type schema:Person
94 Ne998abce54184774884f17a866677da1 schema:familyName Tagliaferri
95 schema:givenName Roberto
96 rdf:type schema:Person
97 Nfd7d4c19c8b64299b909936dab6fcdb6 rdf:first sg:person.015767137221.48
98 rdf:rest rdf:nil
99 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
100 schema:name Information and Computing Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
103 schema:name Artificial Intelligence and Image Processing
104 rdf:type schema:DefinedTerm
105 sg:person.013052261502.67 schema:affiliation grid-institutes:grid.264727.2
106 schema:familyName Masulli
107 schema:givenName Francesco
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013052261502.67
109 rdf:type schema:Person
110 sg:person.015767137221.48 schema:affiliation grid-institutes:None
111 schema:familyName Rovetta
112 schema:givenName Stefano
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015767137221.48
114 rdf:type schema:Person
115 sg:person.07706215665.03 schema:affiliation grid-institutes:grid.11835.3e
116 schema:familyName Filippone
117 schema:givenName Maurizio
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07706215665.03
119 rdf:type schema:Person
120 grid-institutes:None schema:alternateName CNISM Genova Research Unit, Genova, Italy
121 schema:name CNISM Genova Research Unit, Genova, Italy
122 Department of Computer and Information Sciences, University of Genova, Genova, Italy
123 rdf:type schema:Organization
124 grid-institutes:grid.11835.3e schema:alternateName Department of Computer Science, University of Sheffield, United Kingdom
125 schema:name Department of Computer Science, University of Sheffield, United Kingdom
126 rdf:type schema:Organization
127 grid-institutes:grid.264727.2 schema:alternateName Center for Biotechnology, Temple University, Philadelphia, USA
128 schema:name CNISM Genova Research Unit, Genova, Italy
129 Center for Biotechnology, Temple University, Philadelphia, USA
130 Department of Computer and Information Sciences, University of Genova, Genova, Italy
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...