Improving the Consistency of AHP Matrices Using a Multi-layer Perceptron-Based Model View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Jose Antonio Gomez-Ruiz , Marcelo Karanik , José Ignacio Peláez

ABSTRACT

The Analytic Hierarchy Process (AHP) uses hierarchical structures to arrange comparing criteria and alternatives in order to give support in decision making tasks. The comparisons are realized using pairwise matrices which are filled according to the decision maker criterion. Then, matrix consistency is tested and priorities of alternatives are obtained. If a pairwise matrix is incomplete, two procedures must be realized: first, to complete the matrix with adequate values for missing entries and, second, to improve the consistency matrix to an acceptable level. In this paper a model based on Multi-layer Perceptron (MLP) neural networks is presented. This model is capable of completing missing values in AHP pairwise matrices and improving its consistency at the same time. More... »

PAGES

41-48

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-02478-8_6

DOI

http://dx.doi.org/10.1007/978-3-642-02478-8_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035400031


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Artificial Intelligence, University of M\u00e1laga, 29071, M\u00e1laga, Spain", 
          "id": "http://www.grid.ac/institutes/grid.10215.37", 
          "name": [
            "Department of Computer Science and Artificial Intelligence, University of M\u00e1laga, 29071, M\u00e1laga, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gomez-Ruiz", 
        "givenName": "Jose Antonio", 
        "id": "sg:person.0624721322.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624721322.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Artificial Intelligence Research Group, National Technological University, 3500, Resistencia, Argentina", 
          "id": "http://www.grid.ac/institutes/grid.440485.9", 
          "name": [
            "Artificial Intelligence Research Group, National Technological University, 3500, Resistencia, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karanik", 
        "givenName": "Marcelo", 
        "id": "sg:person.010555432135.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010555432135.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science and Artificial Intelligence, University of M\u00e1laga, 29071, M\u00e1laga, Spain", 
          "id": "http://www.grid.ac/institutes/grid.10215.37", 
          "name": [
            "Department of Computer Science and Artificial Intelligence, University of M\u00e1laga, 29071, M\u00e1laga, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pel\u00e1ez", 
        "givenName": "Jos\u00e9 Ignacio", 
        "id": "sg:person.013543334135.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013543334135.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "The Analytic Hierarchy Process (AHP) uses hierarchical structures to arrange comparing criteria and alternatives in order to give support in decision making tasks. The comparisons are realized using pairwise matrices which are filled according to the decision maker criterion. Then, matrix consistency is tested and priorities of alternatives are obtained. If a pairwise matrix is incomplete, two procedures must be realized: first, to complete the matrix with adequate values for missing entries and, second, to improve the consistency matrix to an acceptable level. In this paper a model based on Multi-layer Perceptron (MLP) neural networks is presented. This model is capable of completing missing values in AHP pairwise matrices and improving its consistency at the same time.", 
    "editor": [
      {
        "familyName": "Cabestany", 
        "givenName": "Joan", 
        "type": "Person"
      }, 
      {
        "familyName": "Sandoval", 
        "givenName": "Francisco", 
        "type": "Person"
      }, 
      {
        "familyName": "Prieto", 
        "givenName": "Alberto", 
        "type": "Person"
      }, 
      {
        "familyName": "Corchado", 
        "givenName": "Juan M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-02478-8_6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-02477-1", 
        "978-3-642-02478-8"
      ], 
      "name": "Bio-Inspired Systems: Computational and Ambient Intelligence", 
      "type": "Book"
    }, 
    "keywords": [
      "multi-layer perceptron neural network", 
      "perceptron neural network", 
      "decision maker\u2019s criteria", 
      "neural network", 
      "analytic hierarchy process", 
      "pairwise matrix", 
      "hierarchical structure", 
      "criteria", 
      "hierarchy process", 
      "alternative", 
      "levels", 
      "network", 
      "same time", 
      "task", 
      "consistency", 
      "procedure", 
      "entry", 
      "acceptable level", 
      "support", 
      "values", 
      "consistency matrix", 
      "model", 
      "time", 
      "decisions", 
      "comparison", 
      "priority", 
      "order", 
      "matrix", 
      "matrix consistency", 
      "priorities of alternatives", 
      "adequate values", 
      "AHP matrix", 
      "process", 
      "structure", 
      "paper", 
      "maker criterion", 
      "AHP pairwise matrices", 
      "Multi-layer Perceptron-Based Model", 
      "Perceptron-Based Model"
    ], 
    "name": "Improving the Consistency of AHP Matrices Using a Multi-layer Perceptron-Based Model", 
    "pagination": "41-48", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035400031"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-02478-8_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-02478-8_6", 
      "https://app.dimensions.ai/details/publication/pub.1035400031"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_98.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-02478-8_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02478-8_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02478-8_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02478-8_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02478-8_6'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      23 PREDICATES      65 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-02478-8_6 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nba2f34c249714c778e7f882cc2ce8b46
4 schema:datePublished 2009
5 schema:datePublishedReg 2009-01-01
6 schema:description The Analytic Hierarchy Process (AHP) uses hierarchical structures to arrange comparing criteria and alternatives in order to give support in decision making tasks. The comparisons are realized using pairwise matrices which are filled according to the decision maker criterion. Then, matrix consistency is tested and priorities of alternatives are obtained. If a pairwise matrix is incomplete, two procedures must be realized: first, to complete the matrix with adequate values for missing entries and, second, to improve the consistency matrix to an acceptable level. In this paper a model based on Multi-layer Perceptron (MLP) neural networks is presented. This model is capable of completing missing values in AHP pairwise matrices and improving its consistency at the same time.
7 schema:editor N6ea473fad3ed485ba78247241140afd8
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N190cce6cd8f644ea9559f50d337e124d
12 schema:keywords AHP matrix
13 AHP pairwise matrices
14 Multi-layer Perceptron-Based Model
15 Perceptron-Based Model
16 acceptable level
17 adequate values
18 alternative
19 analytic hierarchy process
20 comparison
21 consistency
22 consistency matrix
23 criteria
24 decision maker’s criteria
25 decisions
26 entry
27 hierarchical structure
28 hierarchy process
29 levels
30 maker criterion
31 matrix
32 matrix consistency
33 model
34 multi-layer perceptron neural network
35 network
36 neural network
37 order
38 pairwise matrix
39 paper
40 perceptron neural network
41 priorities of alternatives
42 priority
43 procedure
44 process
45 same time
46 structure
47 support
48 task
49 time
50 values
51 schema:name Improving the Consistency of AHP Matrices Using a Multi-layer Perceptron-Based Model
52 schema:pagination 41-48
53 schema:productId N749157b5ce5e4b9485ad6fe15e036340
54 N867d70888eef4bd7a09dfba503c63ad6
55 schema:publisher N77e83c91a515439390c24d9c789b0092
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035400031
57 https://doi.org/10.1007/978-3-642-02478-8_6
58 schema:sdDatePublished 2021-11-01T19:03
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N7ebbf84dfca0447280c932c3bc5de2eb
61 schema:url https://doi.org/10.1007/978-3-642-02478-8_6
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N0c1dfa6d23bf48bf9d2a31c167ab37c3 schema:familyName Prieto
66 schema:givenName Alberto
67 rdf:type schema:Person
68 N190cce6cd8f644ea9559f50d337e124d schema:isbn 978-3-642-02477-1
69 978-3-642-02478-8
70 schema:name Bio-Inspired Systems: Computational and Ambient Intelligence
71 rdf:type schema:Book
72 N2de8e7b08b4f4055a0cead97dead3361 schema:familyName Cabestany
73 schema:givenName Joan
74 rdf:type schema:Person
75 N31497ebc5d764f238fd84aae60a17199 rdf:first N0c1dfa6d23bf48bf9d2a31c167ab37c3
76 rdf:rest N58e9e141986b4e17b09b56b05fd89308
77 N58e9e141986b4e17b09b56b05fd89308 rdf:first Ne40f89b828ea40a39139bfe003eaf635
78 rdf:rest rdf:nil
79 N63cf1085b63f43ea814f7e524f549670 rdf:first sg:person.010555432135.02
80 rdf:rest N85d71a03f4014ff2930c6a08dc5f941e
81 N6ea473fad3ed485ba78247241140afd8 rdf:first N2de8e7b08b4f4055a0cead97dead3361
82 rdf:rest Nbb8a5aed6a214c28bdc39f1c89368859
83 N749157b5ce5e4b9485ad6fe15e036340 schema:name dimensions_id
84 schema:value pub.1035400031
85 rdf:type schema:PropertyValue
86 N77e83c91a515439390c24d9c789b0092 schema:name Springer Nature
87 rdf:type schema:Organisation
88 N7ebbf84dfca0447280c932c3bc5de2eb schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N85d71a03f4014ff2930c6a08dc5f941e rdf:first sg:person.013543334135.41
91 rdf:rest rdf:nil
92 N867d70888eef4bd7a09dfba503c63ad6 schema:name doi
93 schema:value 10.1007/978-3-642-02478-8_6
94 rdf:type schema:PropertyValue
95 Nba2f34c249714c778e7f882cc2ce8b46 rdf:first sg:person.0624721322.44
96 rdf:rest N63cf1085b63f43ea814f7e524f549670
97 Nbb8a5aed6a214c28bdc39f1c89368859 rdf:first Nd72f511d363349ce9902570c8eb5091d
98 rdf:rest N31497ebc5d764f238fd84aae60a17199
99 Nd72f511d363349ce9902570c8eb5091d schema:familyName Sandoval
100 schema:givenName Francisco
101 rdf:type schema:Person
102 Ne40f89b828ea40a39139bfe003eaf635 schema:familyName Corchado
103 schema:givenName Juan M.
104 rdf:type schema:Person
105 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
106 schema:name Information and Computing Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
109 schema:name Artificial Intelligence and Image Processing
110 rdf:type schema:DefinedTerm
111 sg:person.010555432135.02 schema:affiliation grid-institutes:grid.440485.9
112 schema:familyName Karanik
113 schema:givenName Marcelo
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010555432135.02
115 rdf:type schema:Person
116 sg:person.013543334135.41 schema:affiliation grid-institutes:grid.10215.37
117 schema:familyName Peláez
118 schema:givenName José Ignacio
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013543334135.41
120 rdf:type schema:Person
121 sg:person.0624721322.44 schema:affiliation grid-institutes:grid.10215.37
122 schema:familyName Gomez-Ruiz
123 schema:givenName Jose Antonio
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624721322.44
125 rdf:type schema:Person
126 grid-institutes:grid.10215.37 schema:alternateName Department of Computer Science and Artificial Intelligence, University of Málaga, 29071, Málaga, Spain
127 schema:name Department of Computer Science and Artificial Intelligence, University of Málaga, 29071, Málaga, Spain
128 rdf:type schema:Organization
129 grid-institutes:grid.440485.9 schema:alternateName Artificial Intelligence Research Group, National Technological University, 3500, Resistencia, Argentina
130 schema:name Artificial Intelligence Research Group, National Technological University, 3500, Resistencia, Argentina
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...