Potential Theory of Subordinate Brownian Motion View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Krzysztof Bogdan , Tomasz Byczkowski , Tadeusz Kulczycki , Michal Ryznar , Renming Song , Zoran Vondracek , R. Song , Z. Vondraček

ABSTRACT

The materials covered in the second part of the book are based on several recent papers, primarily [132], [139], [148] and [146]. The main effort here was given to unify the exposition of those results, and in doing so we also eradicated the typos in these papers. Some new materials and generalizations are also included. Here is the outline of Chapter 5. In Section 5.2 we recall some basic facts about subordinators and give a list of examples that will be useful later on. This list contains stable subordinators, relativistic stable subordinators, subordinators which are sums of stable subordinators and a drift, gamma subordinators, geometric stable subordinators, iterated geometric stable subordinators and Bessel subordinators. All of these subordinators belong to the class of special subordinators (even complete Bernstein subordinators). Special subordinators are important to our approach because they are precisely the ones whose potential measure restricted to (0,?) has a decreasing density u. In fact, for all of the listed subordinators the potential measure has a decreasing density u. In the last part of the section we study asymptotic behaviors of the potential density u and the Lévy density of subordinators by use of Karamata’s and de Haan’s Tauberian and monotone density theorems. More... »

PAGES

87-176

Book

TITLE

Potential Analysis of Stable Processes and its Extensions

ISBN

978-3-642-02140-4
978-3-642-02141-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-02141-1_5

DOI

http://dx.doi.org/10.1007/978-3-642-02141-1_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003543966


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Bogdan", 
        "givenName": "Krzysztof", 
        "type": "Person"
      }, 
      {
        "familyName": "Byczkowski", 
        "givenName": "Tomasz", 
        "type": "Person"
      }, 
      {
        "familyName": "Kulczycki", 
        "givenName": "Tadeusz", 
        "type": "Person"
      }, 
      {
        "familyName": "Ryznar", 
        "givenName": "Michal", 
        "type": "Person"
      }, 
      {
        "familyName": "Song", 
        "givenName": "Renming", 
        "type": "Person"
      }, 
      {
        "familyName": "Vondracek", 
        "givenName": "Zoran", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Illinois at Urbana Champaign", 
          "id": "https://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Mathematics, University of Illinois, 61801\u00a0IL, Urbana"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Zagreb", 
          "id": "https://www.grid.ac/institutes/grid.4808.4", 
          "name": [
            "Department of Mathematics, University of Zagreb, Zagreb, Croatia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vondra\u010dek", 
        "givenName": "Z.", 
        "id": "sg:person.014725442714.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014725442714.88"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "The materials covered in the second part of the book are based on several recent papers, primarily [132], [139], [148] and [146]. The main effort here was given to unify the exposition of those results, and in doing so we also eradicated the typos in these papers. Some new materials and generalizations are also included. Here is the outline of Chapter 5. In Section 5.2 we recall some basic facts about subordinators and give a list of examples that will be useful later on. This list contains stable subordinators, relativistic stable subordinators, subordinators which are sums of stable subordinators and a drift, gamma subordinators, geometric stable subordinators, iterated geometric stable subordinators and Bessel subordinators. All of these subordinators belong to the class of special subordinators (even complete Bernstein subordinators). Special subordinators are important to our approach because they are precisely the ones whose potential measure restricted to (0,?) has a decreasing density u. In fact, for all of the listed subordinators the potential measure has a decreasing density u. In the last part of the section we study asymptotic behaviors of the potential density u and the L\u00e9vy density of subordinators by use of Karamata\u2019s and de Haan\u2019s Tauberian and monotone density theorems.", 
    "editor": [
      {
        "familyName": "Graczyk", 
        "givenName": "Piotr", 
        "type": "Person"
      }, 
      {
        "familyName": "Stos", 
        "givenName": "Andrzej", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-02141-1_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-02140-4", 
        "978-3-642-02141-1"
      ], 
      "name": "Potential Analysis of Stable Processes and its Extensions", 
      "type": "Book"
    }, 
    "name": "Potential Theory of Subordinate Brownian Motion", 
    "pagination": "87-176", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-02141-1_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "10e1dce46186a9046bb1d44ad3ebb40717ebed05e2171fabfdc75abba125dcde"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003543966"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-02141-1_5", 
      "https://app.dimensions.ai/details/publication/pub.1003543966"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000006.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-02141-1_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02141-1_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02141-1_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02141-1_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02141-1_5'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-02141-1_5 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 schema:author N8b53d10ec23a43cebc03cbb91858f01f
4 schema:datePublished 2009
5 schema:datePublishedReg 2009-01-01
6 schema:description The materials covered in the second part of the book are based on several recent papers, primarily [132], [139], [148] and [146]. The main effort here was given to unify the exposition of those results, and in doing so we also eradicated the typos in these papers. Some new materials and generalizations are also included. Here is the outline of Chapter 5. In Section 5.2 we recall some basic facts about subordinators and give a list of examples that will be useful later on. This list contains stable subordinators, relativistic stable subordinators, subordinators which are sums of stable subordinators and a drift, gamma subordinators, geometric stable subordinators, iterated geometric stable subordinators and Bessel subordinators. All of these subordinators belong to the class of special subordinators (even complete Bernstein subordinators). Special subordinators are important to our approach because they are precisely the ones whose potential measure restricted to (0,?) has a decreasing density u. In fact, for all of the listed subordinators the potential measure has a decreasing density u. In the last part of the section we study asymptotic behaviors of the potential density u and the Lévy density of subordinators by use of Karamata’s and de Haan’s Tauberian and monotone density theorems.
7 schema:editor N079ed42b2318473cb896e385b20da704
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nba584a3825f7475e8398e4daa4dea465
12 schema:name Potential Theory of Subordinate Brownian Motion
13 schema:pagination 87-176
14 schema:productId N8504822b6b024f9fb3892ee44467f9c8
15 N96c31c92b70641f8a80314d176564064
16 Ndc4467300f2a47fea21e8a3d5b6094f5
17 schema:publisher N85cce9328f1d491bab861a52150ac193
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003543966
19 https://doi.org/10.1007/978-3-642-02141-1_5
20 schema:sdDatePublished 2019-04-15T16:01
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N7c418501528746c2b8c3b785121438df
23 schema:url http://link.springer.com/10.1007/978-3-642-02141-1_5
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N032b1b28b24a416587748004d70025a5 rdf:first N64264160cefb4d67b6244169b1b48396
28 rdf:rest N61db9372f1b34436b3241c5204836d95
29 N04eaf66226b1437db2a330f2e86a4d7f schema:familyName Stos
30 schema:givenName Andrzej
31 rdf:type schema:Person
32 N079ed42b2318473cb896e385b20da704 rdf:first N2ce18267921141adadcee9e95a767fb3
33 rdf:rest Ne108a431b8104f0caa7dac2c427044b8
34 N08a6bc66d05341efb56b20ffbaabac15 schema:familyName Ryznar
35 schema:givenName Michal
36 rdf:type schema:Person
37 N2ce18267921141adadcee9e95a767fb3 schema:familyName Graczyk
38 schema:givenName Piotr
39 rdf:type schema:Person
40 N3aac6e73934d46649d9a6665f56db782 schema:affiliation https://www.grid.ac/institutes/grid.35403.31
41 schema:familyName Song
42 schema:givenName R.
43 rdf:type schema:Person
44 N4441eee8c0f944a1b0ff76f8e4792335 rdf:first N544f933935e2430d83ce7e73211f3a71
45 rdf:rest Ne47cf6ef4302403bb80cf35fee5bc50a
46 N544f933935e2430d83ce7e73211f3a71 schema:familyName Kulczycki
47 schema:givenName Tadeusz
48 rdf:type schema:Person
49 N61db9372f1b34436b3241c5204836d95 rdf:first N3aac6e73934d46649d9a6665f56db782
50 rdf:rest N984eb7bd64a248d2b5bf1de3936b5ffd
51 N64264160cefb4d67b6244169b1b48396 schema:familyName Vondracek
52 schema:givenName Zoran
53 rdf:type schema:Person
54 N7c418501528746c2b8c3b785121438df schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N8504822b6b024f9fb3892ee44467f9c8 schema:name readcube_id
57 schema:value 10e1dce46186a9046bb1d44ad3ebb40717ebed05e2171fabfdc75abba125dcde
58 rdf:type schema:PropertyValue
59 N85cce9328f1d491bab861a52150ac193 schema:location Berlin, Heidelberg
60 schema:name Springer Berlin Heidelberg
61 rdf:type schema:Organisation
62 N8b53d10ec23a43cebc03cbb91858f01f rdf:first Nbff7f6638df840e0832f0c883863d659
63 rdf:rest Nc95e9260dc8d443ebb147b3b40949da9
64 N8d2f8104912340e88fcdab6a76da3480 schema:familyName Song
65 schema:givenName Renming
66 rdf:type schema:Person
67 N96c31c92b70641f8a80314d176564064 schema:name doi
68 schema:value 10.1007/978-3-642-02141-1_5
69 rdf:type schema:PropertyValue
70 N984eb7bd64a248d2b5bf1de3936b5ffd rdf:first sg:person.014725442714.88
71 rdf:rest rdf:nil
72 Nac51106d73dc4e3099452c3fa4361c97 rdf:first N8d2f8104912340e88fcdab6a76da3480
73 rdf:rest N032b1b28b24a416587748004d70025a5
74 Nba584a3825f7475e8398e4daa4dea465 schema:isbn 978-3-642-02140-4
75 978-3-642-02141-1
76 schema:name Potential Analysis of Stable Processes and its Extensions
77 rdf:type schema:Book
78 Nbff7f6638df840e0832f0c883863d659 schema:familyName Bogdan
79 schema:givenName Krzysztof
80 rdf:type schema:Person
81 Nc95e9260dc8d443ebb147b3b40949da9 rdf:first Nfb29786edfca47bc98a232f8d70f9aab
82 rdf:rest N4441eee8c0f944a1b0ff76f8e4792335
83 Ndc4467300f2a47fea21e8a3d5b6094f5 schema:name dimensions_id
84 schema:value pub.1003543966
85 rdf:type schema:PropertyValue
86 Ne108a431b8104f0caa7dac2c427044b8 rdf:first N04eaf66226b1437db2a330f2e86a4d7f
87 rdf:rest rdf:nil
88 Ne47cf6ef4302403bb80cf35fee5bc50a rdf:first N08a6bc66d05341efb56b20ffbaabac15
89 rdf:rest Nac51106d73dc4e3099452c3fa4361c97
90 Nfb29786edfca47bc98a232f8d70f9aab schema:familyName Byczkowski
91 schema:givenName Tomasz
92 rdf:type schema:Person
93 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
94 schema:name Chemical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
97 schema:name Macromolecular and Materials Chemistry
98 rdf:type schema:DefinedTerm
99 sg:person.014725442714.88 schema:affiliation https://www.grid.ac/institutes/grid.4808.4
100 schema:familyName Vondraček
101 schema:givenName Z.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014725442714.88
103 rdf:type schema:Person
104 https://www.grid.ac/institutes/grid.35403.31 schema:alternateName University of Illinois at Urbana Champaign
105 schema:name Department of Mathematics, University of Illinois, 61801 IL, Urbana
106 rdf:type schema:Organization
107 https://www.grid.ac/institutes/grid.4808.4 schema:alternateName University of Zagreb
108 schema:name Department of Mathematics, University of Zagreb, Zagreb, Croatia
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...