Phylogenies without Branch Bounds: Contracting the Short, Pruning the Deep View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Constantinos Daskalakis , Elchanan Mossel , Sebastien Roch

ABSTRACT

We introduce a new phylogenetic reconstruction algorithm which, unlike most previous rigorous inference techniques, does not rely on assumptions regarding the branch lengths or the depth of the tree. The algorithm returns a forest which is guaranteed to contain all edges that are: 1) sufficiently long and 2) sufficiently close to the leaves. How much of the true tree is recovered depends on the sequence length provided. The algorithm is distance-based and runs in polynomial time. More... »

PAGES

451-465

References to SciGraph publications

Book

TITLE

Research in Computational Molecular Biology

ISBN

978-3-642-02007-0
978-3-642-02008-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-02008-7_32

DOI

http://dx.doi.org/10.1007/978-3-642-02008-7_32

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050043191


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0705", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Forestry Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Microsoft (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419815.0", 
          "name": [
            "Microsoft Research, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daskalakis", 
        "givenName": "Constantinos", 
        "id": "sg:person.0621125744.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621125744.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "UC Berkeley and Weizman Institute, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mossel", 
        "givenName": "Elchanan", 
        "id": "sg:person.01341533324.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341533324.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microsoft (United States)", 
          "id": "https://www.grid.ac/institutes/grid.419815.0", 
          "name": [
            "Microsoft Research, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roch", 
        "givenName": "Sebastien", 
        "id": "sg:person.0617311574.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617311574.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.mbs.2005.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009039648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1183907.1183909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012273700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1098-2418(199903)14:2<153::aid-rsa3>3.0.co;2-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013265373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015771095", 
          "https://doi.org/10.1007/bf01609880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015771095", 
          "https://doi.org/10.1007/bf01609880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0196-8858(86)90038-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019877128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5564(82)90125-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020553876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0025-5564(96)00075-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026511030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02458863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027538383", 
          "https://doi.org/10.1007/bf02458863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02458863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027538383", 
          "https://doi.org/10.1007/bf02458863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3975(99)00028-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030334849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00008277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030470236", 
          "https://doi.org/10.1007/pl00008277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1132516.1132540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037723830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-437x(98)80028-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041404095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1123061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043495787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11732990_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048148096", 
          "https://doi.org/10.1007/11732990_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/10665270252935467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/106652799318337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059205065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2006.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061540500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2007.1010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061540535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s009753970037905x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062879263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s089548010138790x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062882596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/105051606000000024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064391875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1219940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069400470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2413432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069921681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a040454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079752303"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "We introduce a new phylogenetic reconstruction algorithm which, unlike most previous rigorous inference techniques, does not rely on assumptions regarding the branch lengths or the depth of the tree. The algorithm returns a forest which is guaranteed to contain all edges that are: 1) sufficiently long and 2) sufficiently close to the leaves. How much of the true tree is recovered depends on the sequence length provided. The algorithm is distance-based and runs in polynomial time.", 
    "editor": [
      {
        "familyName": "Batzoglou", 
        "givenName": "Serafim", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-02008-7_32", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-02007-0", 
        "978-3-642-02008-7"
      ], 
      "name": "Research in Computational Molecular Biology", 
      "type": "Book"
    }, 
    "name": "Phylogenies without Branch Bounds: Contracting the Short, Pruning the Deep", 
    "pagination": "451-465", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050043191"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-02008-7_32"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ee637f72a2fbc91ef56d69de35bb4ecef32eca02a368194e77b845ea94fd59f7"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-02008-7_32", 
      "https://app.dimensions.ai/details/publication/pub.1050043191"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45348_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-02008-7_32"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02008-7_32'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02008-7_32'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02008-7_32'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02008-7_32'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      23 PREDICATES      51 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-02008-7_32 schema:about anzsrc-for:07
2 anzsrc-for:0705
3 schema:author Ne4629b522abe4a45aad52b8bc7d41b9a
4 schema:citation sg:pub.10.1007/11732990_24
5 sg:pub.10.1007/bf01609880
6 sg:pub.10.1007/bf02458863
7 sg:pub.10.1007/pl00008277
8 https://doi.org/10.1002/(sici)1098-2418(199903)14:2<153::aid-rsa3>3.0.co;2-r
9 https://doi.org/10.1016/0025-5564(82)90125-0
10 https://doi.org/10.1016/0196-8858(86)90038-2
11 https://doi.org/10.1016/j.mbs.2005.11.003
12 https://doi.org/10.1016/s0025-5564(96)00075-2
13 https://doi.org/10.1016/s0304-3975(99)00028-6
14 https://doi.org/10.1016/s0959-437x(98)80028-2
15 https://doi.org/10.1089/10665270252935467
16 https://doi.org/10.1089/106652799318337
17 https://doi.org/10.1093/oxfordjournals.molbev.a040454
18 https://doi.org/10.1109/tcbb.2006.4
19 https://doi.org/10.1109/tcbb.2007.1010
20 https://doi.org/10.1126/science.1123061
21 https://doi.org/10.1137/s009753970037905x
22 https://doi.org/10.1137/s089548010138790x
23 https://doi.org/10.1145/1132516.1132540
24 https://doi.org/10.1145/1183907.1183909
25 https://doi.org/10.1214/105051606000000024
26 https://doi.org/10.2307/1219940
27 https://doi.org/10.2307/2413432
28 schema:datePublished 2009
29 schema:datePublishedReg 2009-01-01
30 schema:description We introduce a new phylogenetic reconstruction algorithm which, unlike most previous rigorous inference techniques, does not rely on assumptions regarding the branch lengths or the depth of the tree. The algorithm returns a forest which is guaranteed to contain all edges that are: 1) sufficiently long and 2) sufficiently close to the leaves. How much of the true tree is recovered depends on the sequence length provided. The algorithm is distance-based and runs in polynomial time.
31 schema:editor N69665f9084964f20b679ad4e82e7f8b8
32 schema:genre chapter
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N7ce9e63602be429f85f772cb480f8f92
36 schema:name Phylogenies without Branch Bounds: Contracting the Short, Pruning the Deep
37 schema:pagination 451-465
38 schema:productId N105667b3f5bd470b8362cf4f32e50207
39 N556c87fe5672467884fa6eaff0c0ec5e
40 Nd7a8a1481e3340049b08d39987d2fbc4
41 schema:publisher N2840f168b966487db1cc393ad06e8f75
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050043191
43 https://doi.org/10.1007/978-3-642-02008-7_32
44 schema:sdDatePublished 2019-04-16T07:12
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Ndbc9350f30d74c768fc7b4b69c214148
47 schema:url https://link.springer.com/10.1007%2F978-3-642-02008-7_32
48 sgo:license sg:explorer/license/
49 sgo:sdDataset chapters
50 rdf:type schema:Chapter
51 N105667b3f5bd470b8362cf4f32e50207 schema:name readcube_id
52 schema:value ee637f72a2fbc91ef56d69de35bb4ecef32eca02a368194e77b845ea94fd59f7
53 rdf:type schema:PropertyValue
54 N1a2a4e5a111c437ab0992cd88b513c72 rdf:first sg:person.01341533324.08
55 rdf:rest Na4a3135dc1144cc79c388ec250fcc408
56 N2840f168b966487db1cc393ad06e8f75 schema:location Berlin, Heidelberg
57 schema:name Springer Berlin Heidelberg
58 rdf:type schema:Organisation
59 N556c87fe5672467884fa6eaff0c0ec5e schema:name dimensions_id
60 schema:value pub.1050043191
61 rdf:type schema:PropertyValue
62 N69665f9084964f20b679ad4e82e7f8b8 rdf:first Nb737cb34f1764b47adbdab8008166f08
63 rdf:rest rdf:nil
64 N7ce9e63602be429f85f772cb480f8f92 schema:isbn 978-3-642-02007-0
65 978-3-642-02008-7
66 schema:name Research in Computational Molecular Biology
67 rdf:type schema:Book
68 Na4a3135dc1144cc79c388ec250fcc408 rdf:first sg:person.0617311574.59
69 rdf:rest rdf:nil
70 Nb737cb34f1764b47adbdab8008166f08 schema:familyName Batzoglou
71 schema:givenName Serafim
72 rdf:type schema:Person
73 Nce37bef1384e4bbc9849db9248546fad schema:name UC Berkeley and Weizman Institute, USA
74 rdf:type schema:Organization
75 Nd7a8a1481e3340049b08d39987d2fbc4 schema:name doi
76 schema:value 10.1007/978-3-642-02008-7_32
77 rdf:type schema:PropertyValue
78 Ndbc9350f30d74c768fc7b4b69c214148 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Ne4629b522abe4a45aad52b8bc7d41b9a rdf:first sg:person.0621125744.74
81 rdf:rest N1a2a4e5a111c437ab0992cd88b513c72
82 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
83 schema:name Agricultural and Veterinary Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0705 schema:inDefinedTermSet anzsrc-for:
86 schema:name Forestry Sciences
87 rdf:type schema:DefinedTerm
88 sg:person.01341533324.08 schema:affiliation Nce37bef1384e4bbc9849db9248546fad
89 schema:familyName Mossel
90 schema:givenName Elchanan
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341533324.08
92 rdf:type schema:Person
93 sg:person.0617311574.59 schema:affiliation https://www.grid.ac/institutes/grid.419815.0
94 schema:familyName Roch
95 schema:givenName Sebastien
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617311574.59
97 rdf:type schema:Person
98 sg:person.0621125744.74 schema:affiliation https://www.grid.ac/institutes/grid.419815.0
99 schema:familyName Daskalakis
100 schema:givenName Constantinos
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621125744.74
102 rdf:type schema:Person
103 sg:pub.10.1007/11732990_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048148096
104 https://doi.org/10.1007/11732990_24
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf01609880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015771095
107 https://doi.org/10.1007/bf01609880
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02458863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027538383
110 https://doi.org/10.1007/bf02458863
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/pl00008277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030470236
113 https://doi.org/10.1007/pl00008277
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/(sici)1098-2418(199903)14:2<153::aid-rsa3>3.0.co;2-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1013265373
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0025-5564(82)90125-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020553876
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0196-8858(86)90038-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019877128
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.mbs.2005.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009039648
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/s0025-5564(96)00075-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026511030
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0304-3975(99)00028-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030334849
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0959-437x(98)80028-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041404095
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1089/10665270252935467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204929
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1089/106652799318337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059205065
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1093/oxfordjournals.molbev.a040454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079752303
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/tcbb.2006.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061540500
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/tcbb.2007.1010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061540535
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1126/science.1123061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043495787
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1137/s009753970037905x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062879263
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1137/s089548010138790x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062882596
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1145/1132516.1132540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037723830
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1145/1183907.1183909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012273700
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1214/105051606000000024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391875
150 rdf:type schema:CreativeWork
151 https://doi.org/10.2307/1219940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069400470
152 rdf:type schema:CreativeWork
153 https://doi.org/10.2307/2413432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069921681
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.419815.0 schema:alternateName Microsoft (United States)
156 schema:name Microsoft Research, USA
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...