Combinatorial Algorithms for Structural Variation Detection in High Throughput Sequenced Genomes View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Fereydoun Hormozdiari , Can Alkan , Evan E. Eichler , S. Cenk Sahinalp

ABSTRACT

Recent studies show that, along with single nucleotide polymorphisms and small indels, larger structural variants among human individuals are common. These studies have typically been based high-cost library generation and Sanger sequencing; however, recent introduction of next-generation sequencing (NGS) technologies is changing how research in this area is conducted in a significant way. Highthroughput sequencing technologies such as 454, Illumina, Helicos, and AB SOLiD produce shorter reads than the traditional capillary sequencing, yet they reduce the cost (and/or the redundancy) by a factor of 10 - 100 and perhaps even more. Those NGS technologies with the capability of sequencing paired-ends (or matepairs) of a clone insert (which follows a tight length distribution) have made it feasible to perform detailed and comprehensive genome variation and rearrangement studies. Unfortunately, the few existing algorithms for identifying structural variation among individuals using paired-end reads have not been designed to handle the short read lengths and the errors implied by these platforms. Here, we describe, for the first time, algorithms for identifying various forms of structural variation between a paired-end NGS sequenced genome and a reference genome. More... »

PAGES

218-219

Book

TITLE

Research in Computational Molecular Biology

ISBN

978-3-642-02007-0
978-3-642-02008-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-02008-7_16

DOI

http://dx.doi.org/10.1007/978-3-642-02008-7_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038133450


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Simon Fraser University", 
          "id": "https://www.grid.ac/institutes/grid.61971.38", 
          "name": [
            "Lab for Computational Biology, Simon Fraser University, Burnaby, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hormozdiari", 
        "givenName": "Fereydoun", 
        "id": "sg:person.0701340666.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701340666.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Dept. of Genome Sciences, University of Washington, and Howard Hughes Medical Institute, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alkan", 
        "givenName": "Can", 
        "id": "sg:person.0737070412.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737070412.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Dept. of Genome Sciences, University of Washington, and Howard Hughes Medical Institute, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eichler", 
        "givenName": "Evan E.", 
        "id": "sg:person.0705101106.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705101106.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Simon Fraser University", 
          "id": "https://www.grid.ac/institutes/grid.61971.38", 
          "name": [
            "Lab for Computational Biology, Simon Fraser University, Burnaby, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sahinalp", 
        "givenName": "S. Cenk", 
        "id": "sg:person.01132015666.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132015666.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "Recent studies show that, along with single nucleotide polymorphisms and small indels, larger structural variants among human individuals are common. These studies have typically been based high-cost library generation and Sanger sequencing; however, recent introduction of next-generation sequencing (NGS) technologies is changing how research in this area is conducted in a significant way. Highthroughput sequencing technologies such as 454, Illumina, Helicos, and AB SOLiD produce shorter reads than the traditional capillary sequencing, yet they reduce the cost (and/or the redundancy) by a factor of 10 - 100 and perhaps even more. Those NGS technologies with the capability of sequencing paired-ends (or matepairs) of a clone insert (which follows a tight length distribution) have made it feasible to perform detailed and comprehensive genome variation and rearrangement studies. Unfortunately, the few existing algorithms for identifying structural variation among individuals using paired-end reads have not been designed to handle the short read lengths and the errors implied by these platforms. Here, we describe, for the first time, algorithms for identifying various forms of structural variation between a paired-end NGS sequenced genome and a reference genome.", 
    "editor": [
      {
        "familyName": "Batzoglou", 
        "givenName": "Serafim", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-02008-7_16", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-02007-0", 
        "978-3-642-02008-7"
      ], 
      "name": "Research in Computational Molecular Biology", 
      "type": "Book"
    }, 
    "name": "Combinatorial Algorithms for Structural Variation Detection in High Throughput Sequenced Genomes", 
    "pagination": "218-219", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-02008-7_16"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b5a81958b245f4e5c200578b0306865f954a92e15be75b97c7f6911639a7952e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038133450"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-02008-7_16", 
      "https://app.dimensions.ai/details/publication/pub.1038133450"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000065.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-02008-7_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02008-7_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02008-7_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02008-7_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02008-7_16'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-02008-7_16 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Na806680208eb46fca184c848d6e75f9f
4 schema:datePublished 2009
5 schema:datePublishedReg 2009-01-01
6 schema:description Recent studies show that, along with single nucleotide polymorphisms and small indels, larger structural variants among human individuals are common. These studies have typically been based high-cost library generation and Sanger sequencing; however, recent introduction of next-generation sequencing (NGS) technologies is changing how research in this area is conducted in a significant way. Highthroughput sequencing technologies such as 454, Illumina, Helicos, and AB SOLiD produce shorter reads than the traditional capillary sequencing, yet they reduce the cost (and/or the redundancy) by a factor of 10 - 100 and perhaps even more. Those NGS technologies with the capability of sequencing paired-ends (or matepairs) of a clone insert (which follows a tight length distribution) have made it feasible to perform detailed and comprehensive genome variation and rearrangement studies. Unfortunately, the few existing algorithms for identifying structural variation among individuals using paired-end reads have not been designed to handle the short read lengths and the errors implied by these platforms. Here, we describe, for the first time, algorithms for identifying various forms of structural variation between a paired-end NGS sequenced genome and a reference genome.
7 schema:editor N08a086a321b740aa9ccfdbfbce9d44a8
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N0cccdc3241d34f25a69303768493c135
12 schema:name Combinatorial Algorithms for Structural Variation Detection in High Throughput Sequenced Genomes
13 schema:pagination 218-219
14 schema:productId N91d90ab08e54490ca355663e3cce12b4
15 Nd29a53a44dbc483a98b7057f196f7e2a
16 Nfcf0d5d5c6af4d42ac0da94a09fafb10
17 schema:publisher N4eb813b5f3064e199ee166a3f279ad7e
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038133450
19 https://doi.org/10.1007/978-3-642-02008-7_16
20 schema:sdDatePublished 2019-04-15T21:46
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N9adc7628bd664a0e92071e6346cb62eb
23 schema:url http://link.springer.com/10.1007/978-3-642-02008-7_16
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N08a086a321b740aa9ccfdbfbce9d44a8 rdf:first N702464ea8165420c8443b8dc85571b70
28 rdf:rest rdf:nil
29 N0cccdc3241d34f25a69303768493c135 schema:isbn 978-3-642-02007-0
30 978-3-642-02008-7
31 schema:name Research in Computational Molecular Biology
32 rdf:type schema:Book
33 N1bf7fc72dce94e0c9978ec02c940db2b rdf:first sg:person.0737070412.26
34 rdf:rest Nb9d4e8f71e134d9bae1c0dfd87828fc7
35 N4eb813b5f3064e199ee166a3f279ad7e schema:location Berlin, Heidelberg
36 schema:name Springer Berlin Heidelberg
37 rdf:type schema:Organisation
38 N702464ea8165420c8443b8dc85571b70 schema:familyName Batzoglou
39 schema:givenName Serafim
40 rdf:type schema:Person
41 N91d90ab08e54490ca355663e3cce12b4 schema:name doi
42 schema:value 10.1007/978-3-642-02008-7_16
43 rdf:type schema:PropertyValue
44 N9adc7628bd664a0e92071e6346cb62eb schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 Na806680208eb46fca184c848d6e75f9f rdf:first sg:person.0701340666.44
47 rdf:rest N1bf7fc72dce94e0c9978ec02c940db2b
48 Nb9d4e8f71e134d9bae1c0dfd87828fc7 rdf:first sg:person.0705101106.89
49 rdf:rest Nc364be8252104e568394a207c7f4dcb2
50 Nc364be8252104e568394a207c7f4dcb2 rdf:first sg:person.01132015666.77
51 rdf:rest rdf:nil
52 Nd29a53a44dbc483a98b7057f196f7e2a schema:name readcube_id
53 schema:value b5a81958b245f4e5c200578b0306865f954a92e15be75b97c7f6911639a7952e
54 rdf:type schema:PropertyValue
55 Nfcf0d5d5c6af4d42ac0da94a09fafb10 schema:name dimensions_id
56 schema:value pub.1038133450
57 rdf:type schema:PropertyValue
58 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
59 schema:name Biological Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
62 schema:name Genetics
63 rdf:type schema:DefinedTerm
64 sg:person.01132015666.77 schema:affiliation https://www.grid.ac/institutes/grid.61971.38
65 schema:familyName Sahinalp
66 schema:givenName S. Cenk
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132015666.77
68 rdf:type schema:Person
69 sg:person.0701340666.44 schema:affiliation https://www.grid.ac/institutes/grid.61971.38
70 schema:familyName Hormozdiari
71 schema:givenName Fereydoun
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701340666.44
73 rdf:type schema:Person
74 sg:person.0705101106.89 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
75 schema:familyName Eichler
76 schema:givenName Evan E.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705101106.89
78 rdf:type schema:Person
79 sg:person.0737070412.26 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
80 schema:familyName Alkan
81 schema:givenName Can
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737070412.26
83 rdf:type schema:Person
84 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
85 schema:name Dept. of Genome Sciences, University of Washington, and Howard Hughes Medical Institute, Seattle, WA, USA
86 rdf:type schema:Organization
87 https://www.grid.ac/institutes/grid.61971.38 schema:alternateName Simon Fraser University
88 schema:name Lab for Computational Biology, Simon Fraser University, Burnaby, BC, Canada
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...