Combinatorial Algorithms for Structural Variation Detection in High Throughput Sequenced Genomes View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Fereydoun Hormozdiari , Can Alkan , Evan E. Eichler , S. Cenk Sahinalp

ABSTRACT

Recent studies show that, along with single nucleotide polymorphisms and small indels, larger structural variants among human individuals are common. These studies have typically been based high-cost library generation and Sanger sequencing; however, recent introduction of next-generation sequencing (NGS) technologies is changing how research in this area is conducted in a significant way. Highthroughput sequencing technologies such as 454, Illumina, Helicos, and AB SOLiD produce shorter reads than the traditional capillary sequencing, yet they reduce the cost (and/or the redundancy) by a factor of 10 - 100 and perhaps even more. Those NGS technologies with the capability of sequencing paired-ends (or matepairs) of a clone insert (which follows a tight length distribution) have made it feasible to perform detailed and comprehensive genome variation and rearrangement studies. Unfortunately, the few existing algorithms for identifying structural variation among individuals using paired-end reads have not been designed to handle the short read lengths and the errors implied by these platforms. Here, we describe, for the first time, algorithms for identifying various forms of structural variation between a paired-end NGS sequenced genome and a reference genome. More... »

PAGES

218-219

Book

TITLE

Research in Computational Molecular Biology

ISBN

978-3-642-02007-0
978-3-642-02008-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-02008-7_16

DOI

http://dx.doi.org/10.1007/978-3-642-02008-7_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038133450


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Simon Fraser University", 
          "id": "https://www.grid.ac/institutes/grid.61971.38", 
          "name": [
            "Lab for Computational Biology, Simon Fraser University, Burnaby, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hormozdiari", 
        "givenName": "Fereydoun", 
        "id": "sg:person.0701340666.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701340666.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Dept. of Genome Sciences, University of Washington, and Howard Hughes Medical Institute, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alkan", 
        "givenName": "Can", 
        "id": "sg:person.0737070412.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737070412.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington", 
          "id": "https://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Dept. of Genome Sciences, University of Washington, and Howard Hughes Medical Institute, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eichler", 
        "givenName": "Evan E.", 
        "id": "sg:person.0705101106.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705101106.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Simon Fraser University", 
          "id": "https://www.grid.ac/institutes/grid.61971.38", 
          "name": [
            "Lab for Computational Biology, Simon Fraser University, Burnaby, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sahinalp", 
        "givenName": "S. Cenk", 
        "id": "sg:person.01132015666.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132015666.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "Recent studies show that, along with single nucleotide polymorphisms and small indels, larger structural variants among human individuals are common. These studies have typically been based high-cost library generation and Sanger sequencing; however, recent introduction of next-generation sequencing (NGS) technologies is changing how research in this area is conducted in a significant way. Highthroughput sequencing technologies such as 454, Illumina, Helicos, and AB SOLiD produce shorter reads than the traditional capillary sequencing, yet they reduce the cost (and/or the redundancy) by a factor of 10 - 100 and perhaps even more. Those NGS technologies with the capability of sequencing paired-ends (or matepairs) of a clone insert (which follows a tight length distribution) have made it feasible to perform detailed and comprehensive genome variation and rearrangement studies. Unfortunately, the few existing algorithms for identifying structural variation among individuals using paired-end reads have not been designed to handle the short read lengths and the errors implied by these platforms. Here, we describe, for the first time, algorithms for identifying various forms of structural variation between a paired-end NGS sequenced genome and a reference genome.", 
    "editor": [
      {
        "familyName": "Batzoglou", 
        "givenName": "Serafim", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-02008-7_16", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-02007-0", 
        "978-3-642-02008-7"
      ], 
      "name": "Research in Computational Molecular Biology", 
      "type": "Book"
    }, 
    "name": "Combinatorial Algorithms for Structural Variation Detection in High Throughput Sequenced Genomes", 
    "pagination": "218-219", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-02008-7_16"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b5a81958b245f4e5c200578b0306865f954a92e15be75b97c7f6911639a7952e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038133450"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-02008-7_16", 
      "https://app.dimensions.ai/details/publication/pub.1038133450"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000065.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-642-02008-7_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02008-7_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02008-7_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02008-7_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-02008-7_16'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-02008-7_16 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nc8e17fab44ad42fdb8d2c91d488262fb
4 schema:datePublished 2009
5 schema:datePublishedReg 2009-01-01
6 schema:description Recent studies show that, along with single nucleotide polymorphisms and small indels, larger structural variants among human individuals are common. These studies have typically been based high-cost library generation and Sanger sequencing; however, recent introduction of next-generation sequencing (NGS) technologies is changing how research in this area is conducted in a significant way. Highthroughput sequencing technologies such as 454, Illumina, Helicos, and AB SOLiD produce shorter reads than the traditional capillary sequencing, yet they reduce the cost (and/or the redundancy) by a factor of 10 - 100 and perhaps even more. Those NGS technologies with the capability of sequencing paired-ends (or matepairs) of a clone insert (which follows a tight length distribution) have made it feasible to perform detailed and comprehensive genome variation and rearrangement studies. Unfortunately, the few existing algorithms for identifying structural variation among individuals using paired-end reads have not been designed to handle the short read lengths and the errors implied by these platforms. Here, we describe, for the first time, algorithms for identifying various forms of structural variation between a paired-end NGS sequenced genome and a reference genome.
7 schema:editor N8808c777eeea477cbd2c69daee0a44fa
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Na0c2d08b9c4b4c8a8873d3fe4cd270ac
12 schema:name Combinatorial Algorithms for Structural Variation Detection in High Throughput Sequenced Genomes
13 schema:pagination 218-219
14 schema:productId N001f55f2858d435daf569f097e5ae420
15 N636d34eb5a664dd3a505a293f8ba4980
16 Nda12540cadce4ccd923eb2c519785e44
17 schema:publisher N81bdb4d0554a4debb80be5011db3ad70
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038133450
19 https://doi.org/10.1007/978-3-642-02008-7_16
20 schema:sdDatePublished 2019-04-15T21:46
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Ne2b762b5207c41fab53a02a71ba14aca
23 schema:url http://link.springer.com/10.1007/978-3-642-02008-7_16
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N001f55f2858d435daf569f097e5ae420 schema:name doi
28 schema:value 10.1007/978-3-642-02008-7_16
29 rdf:type schema:PropertyValue
30 N09373a6bdf6e45a3b4937616aefdaa9e rdf:first sg:person.0737070412.26
31 rdf:rest N37d4000218bd42048504407343cbac26
32 N252fab2525e94024946d08877ef66675 rdf:first sg:person.01132015666.77
33 rdf:rest rdf:nil
34 N37d4000218bd42048504407343cbac26 rdf:first sg:person.0705101106.89
35 rdf:rest N252fab2525e94024946d08877ef66675
36 N636d34eb5a664dd3a505a293f8ba4980 schema:name readcube_id
37 schema:value b5a81958b245f4e5c200578b0306865f954a92e15be75b97c7f6911639a7952e
38 rdf:type schema:PropertyValue
39 N81bdb4d0554a4debb80be5011db3ad70 schema:location Berlin, Heidelberg
40 schema:name Springer Berlin Heidelberg
41 rdf:type schema:Organisation
42 N8248b82a3525431ca76883c6f3012c06 schema:familyName Batzoglou
43 schema:givenName Serafim
44 rdf:type schema:Person
45 N8808c777eeea477cbd2c69daee0a44fa rdf:first N8248b82a3525431ca76883c6f3012c06
46 rdf:rest rdf:nil
47 Na0c2d08b9c4b4c8a8873d3fe4cd270ac schema:isbn 978-3-642-02007-0
48 978-3-642-02008-7
49 schema:name Research in Computational Molecular Biology
50 rdf:type schema:Book
51 Nc8e17fab44ad42fdb8d2c91d488262fb rdf:first sg:person.0701340666.44
52 rdf:rest N09373a6bdf6e45a3b4937616aefdaa9e
53 Nda12540cadce4ccd923eb2c519785e44 schema:name dimensions_id
54 schema:value pub.1038133450
55 rdf:type schema:PropertyValue
56 Ne2b762b5207c41fab53a02a71ba14aca schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
59 schema:name Biological Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
62 schema:name Genetics
63 rdf:type schema:DefinedTerm
64 sg:person.01132015666.77 schema:affiliation https://www.grid.ac/institutes/grid.61971.38
65 schema:familyName Sahinalp
66 schema:givenName S. Cenk
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132015666.77
68 rdf:type schema:Person
69 sg:person.0701340666.44 schema:affiliation https://www.grid.ac/institutes/grid.61971.38
70 schema:familyName Hormozdiari
71 schema:givenName Fereydoun
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701340666.44
73 rdf:type schema:Person
74 sg:person.0705101106.89 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
75 schema:familyName Eichler
76 schema:givenName Evan E.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705101106.89
78 rdf:type schema:Person
79 sg:person.0737070412.26 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
80 schema:familyName Alkan
81 schema:givenName Can
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737070412.26
83 rdf:type schema:Person
84 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
85 schema:name Dept. of Genome Sciences, University of Washington, and Howard Hughes Medical Institute, Seattle, WA, USA
86 rdf:type schema:Organization
87 https://www.grid.ac/institutes/grid.61971.38 schema:alternateName Simon Fraser University
88 schema:name Lab for Computational Biology, Simon Fraser University, Burnaby, BC, Canada
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...