Beyond Minutiae: A Fingerprint Individuality Model with Pattern, Ridge and Pore Features View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Yi Chen , Anil K. Jain

ABSTRACT

Fingerprints are considered to be unique because they contain various distinctive features, including minutiae, ridges, pores, etc. Some attempts have been made to model the minutiae in order to get a quantitative measure for uniqueness or individuality of fingerprints. However, these models do not fully exploit information contained in non-minutiae features that is utilized for matching fingerprints in practice. We propose an individuality model that incorporates all three levels of fingerprint features: pattern or class type (Level 1), minutiae and ridges (Level 2), and pores (Level 3). Correlations among these features and their distributions are also taken into account in our model. Experimental results show that the theoretical estimates of fingerprint individuality using our model consistently follow the empirical values based on the public domain NIST-4 database. More... »

PAGES

523-533

Book

TITLE

Advances in Biometrics

ISBN

978-3-642-01792-6
978-3-642-01793-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-01793-3_54

DOI

http://dx.doi.org/10.1007/978-3-642-01793-3_54

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049963380


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "DigitalPersona Inc., USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Michigan State University, USA", 
            "DigitalPersona Inc., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yi", 
        "id": "sg:person.01265615443.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265615443.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Michigan State University, USA", 
          "id": "http://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Michigan State University, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jain", 
        "givenName": "Anil K.", 
        "id": "sg:person.01031110710.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031110710.30"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "Fingerprints are considered to be unique because they contain various distinctive features, including minutiae, ridges, pores, etc. Some attempts have been made to model the minutiae in order to get a quantitative measure for uniqueness or individuality of fingerprints. However, these models do not fully exploit information contained in non-minutiae features that is utilized for matching fingerprints in practice. We propose an individuality model that incorporates all three levels of fingerprint features: pattern or class type (Level 1), minutiae and ridges (Level 2), and pores (Level 3). Correlations among these features and their distributions are also taken into account in our model. Experimental results show that the theoretical estimates of fingerprint individuality using our model consistently follow the empirical values based on the public domain NIST-4 database.", 
    "editor": [
      {
        "familyName": "Tistarelli", 
        "givenName": "Massimo", 
        "type": "Person"
      }, 
      {
        "familyName": "Nixon", 
        "givenName": "Mark S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-01793-3_54", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-642-01792-6", 
        "978-3-642-01793-3"
      ], 
      "name": "Advances in Biometrics", 
      "type": "Book"
    }, 
    "keywords": [
      "quantitative measures", 
      "features", 
      "measures", 
      "levels", 
      "patterns", 
      "database", 
      "practice", 
      "correlation", 
      "model", 
      "types", 
      "results", 
      "distinctive features", 
      "attempt", 
      "information", 
      "values", 
      "fingerprints", 
      "ridge", 
      "individuality", 
      "class type", 
      "estimates", 
      "order", 
      "distribution", 
      "account", 
      "empirical values", 
      "pores", 
      "uniqueness", 
      "minutiae", 
      "individuality of fingerprints", 
      "fingerprint features", 
      "NIST-4 database", 
      "experimental results", 
      "theoretical estimates", 
      "fingerprint individuality", 
      "pore features"
    ], 
    "name": "Beyond Minutiae: A Fingerprint Individuality Model with Pattern, Ridge and Pore Features", 
    "pagination": "523-533", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049963380"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-01793-3_54"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-01793-3_54", 
      "https://app.dimensions.ai/details/publication/pub.1049963380"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_16.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-01793-3_54"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-01793-3_54'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-01793-3_54'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-01793-3_54'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-01793-3_54'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      22 PREDICATES      59 URIs      52 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-01793-3_54 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4ea497c83da743288665e71d2beefa54
4 schema:datePublished 2009
5 schema:datePublishedReg 2009-01-01
6 schema:description Fingerprints are considered to be unique because they contain various distinctive features, including minutiae, ridges, pores, etc. Some attempts have been made to model the minutiae in order to get a quantitative measure for uniqueness or individuality of fingerprints. However, these models do not fully exploit information contained in non-minutiae features that is utilized for matching fingerprints in practice. We propose an individuality model that incorporates all three levels of fingerprint features: pattern or class type (Level 1), minutiae and ridges (Level 2), and pores (Level 3). Correlations among these features and their distributions are also taken into account in our model. Experimental results show that the theoretical estimates of fingerprint individuality using our model consistently follow the empirical values based on the public domain NIST-4 database.
7 schema:editor N2d44b1460ecb4a2982ee0b07555b1eff
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N8cd475ef50b34e45a1907dd52f12a66b
11 schema:keywords NIST-4 database
12 account
13 attempt
14 class type
15 correlation
16 database
17 distinctive features
18 distribution
19 empirical values
20 estimates
21 experimental results
22 features
23 fingerprint features
24 fingerprint individuality
25 fingerprints
26 individuality
27 individuality of fingerprints
28 information
29 levels
30 measures
31 minutiae
32 model
33 order
34 patterns
35 pore features
36 pores
37 practice
38 quantitative measures
39 results
40 ridge
41 theoretical estimates
42 types
43 uniqueness
44 values
45 schema:name Beyond Minutiae: A Fingerprint Individuality Model with Pattern, Ridge and Pore Features
46 schema:pagination 523-533
47 schema:productId N226db47e443d40b58b378bb45dbd7295
48 N24db2b5af42e4c16895882eda15e2cb1
49 schema:publisher N9577bc54a4e343bfa0c2fc58420945ed
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049963380
51 https://doi.org/10.1007/978-3-642-01793-3_54
52 schema:sdDatePublished 2022-11-24T21:12
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N47f7773e8c3a4b9e8270c43524429a03
55 schema:url https://doi.org/10.1007/978-3-642-01793-3_54
56 sgo:license sg:explorer/license/
57 sgo:sdDataset chapters
58 rdf:type schema:Chapter
59 N1a5b59424c9d4be2869a32d858326000 schema:familyName Nixon
60 schema:givenName Mark S.
61 rdf:type schema:Person
62 N226db47e443d40b58b378bb45dbd7295 schema:name doi
63 schema:value 10.1007/978-3-642-01793-3_54
64 rdf:type schema:PropertyValue
65 N24db2b5af42e4c16895882eda15e2cb1 schema:name dimensions_id
66 schema:value pub.1049963380
67 rdf:type schema:PropertyValue
68 N2d44b1460ecb4a2982ee0b07555b1eff rdf:first N5e794c59514647f89a726255260fcdd5
69 rdf:rest Nf409cba60f554faead208d09a7b59d72
70 N47f7773e8c3a4b9e8270c43524429a03 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N4ea497c83da743288665e71d2beefa54 rdf:first sg:person.01265615443.74
73 rdf:rest N8877a235e7664cd1828f3209f29f43f6
74 N5e794c59514647f89a726255260fcdd5 schema:familyName Tistarelli
75 schema:givenName Massimo
76 rdf:type schema:Person
77 N8877a235e7664cd1828f3209f29f43f6 rdf:first sg:person.01031110710.30
78 rdf:rest rdf:nil
79 N8cd475ef50b34e45a1907dd52f12a66b schema:isbn 978-3-642-01792-6
80 978-3-642-01793-3
81 schema:name Advances in Biometrics
82 rdf:type schema:Book
83 N9577bc54a4e343bfa0c2fc58420945ed schema:name Springer Nature
84 rdf:type schema:Organisation
85 Nf409cba60f554faead208d09a7b59d72 rdf:first N1a5b59424c9d4be2869a32d858326000
86 rdf:rest rdf:nil
87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information and Computing Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
91 schema:name Artificial Intelligence and Image Processing
92 rdf:type schema:DefinedTerm
93 sg:person.01031110710.30 schema:affiliation grid-institutes:grid.17088.36
94 schema:familyName Jain
95 schema:givenName Anil K.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031110710.30
97 rdf:type schema:Person
98 sg:person.01265615443.74 schema:affiliation grid-institutes:None
99 schema:familyName Chen
100 schema:givenName Yi
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265615443.74
102 rdf:type schema:Person
103 grid-institutes:None schema:alternateName DigitalPersona Inc., USA
104 schema:name DigitalPersona Inc., USA
105 Michigan State University, USA
106 rdf:type schema:Organization
107 grid-institutes:grid.17088.36 schema:alternateName Michigan State University, USA
108 schema:name Michigan State University, USA
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...