A Data Driven Ensemble Classifier for Credit Scoring Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Nan-Chen Hsieh , Lun-Ping Hung , Chia-Ling Ho

ABSTRACT

This study focuses on predicting whether a credit applicant can be categorized as good, bad or borderline from information initially supplied. Given its importance, many researchers have recently worked on an ensemble of classifiers. However, to the best of our knowledge, unrepresentative samples drastically reduce the accuracy of the deployment classifier. Few have attempted to preprocess the input samples into more homogeneous cluster groups and then fit the ensemble classifier accordingly. For this reason, we introduce the concept of class-wise classification as a preprocessing step in order to obtain an efficient ensemble classifier. This strategy would work better than a direct ensemble of classifiers without the preprocessing step. The proposed ensemble classifier is constructed by incorporating several data mining techniques, mainly involving optimal associate binning to discretize continuous values; neural network, support vector machine, and Bayesian network are used to augment the ensemble classifier. In particular, the Markov blanket concept of Bayesian network allows for a natural form of feature selection, which provides a basis for mining association rules. More... »

PAGES

351-362

References to SciGraph publications

  • 2006. Iterative Bayesian Network Implementation by Using Annotated Association Rules in MANAGING KNOWLEDGE IN A WORLD OF NETWORKS
  • Book

    TITLE

    Advances in Knowledge Discovery and Data Mining

    ISBN

    978-3-642-01306-5
    978-3-642-01307-2

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-01307-2_33

    DOI

    http://dx.doi.org/10.1007/978-3-642-01307-2_33

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046507756


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Taipei University of Nursing and Health Science", 
              "id": "https://www.grid.ac/institutes/grid.412146.4", 
              "name": [
                "Department of Information Management, National Taipei College of Nursing, No. 365, Min-Ten Road, 11257, Taipei, Taiwan, R.O.C."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hsieh", 
            "givenName": "Nan-Chen", 
            "id": "sg:person.012734774203.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734774203.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Information Management, Technology and Science Institute of Northern, Taiwan No. 2, Xueyuan Rd., Peitou, 112, Taipei, Taiwan, R.O.C."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hung", 
            "givenName": "Lun-Ping", 
            "id": "sg:person.0670652253.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670652253.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of International Trade, Technology and Science Institute of Northern Taiwan, No. 2, Xueyuan Rd., Peitou, 112, Taipei, Taiwan, R.O.C."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ho", 
            "givenName": "Chia-Ling", 
            "id": "sg:person.010071403373.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010071403373.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.inffus.2007.07.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018401932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1014052.1014074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020700091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cor.2004.03.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023482737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2006.07.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024847633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-1-55860-377-6.50032-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027065619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2006.04.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027611704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2004.12.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028447691"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/0963818042000216811", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032436024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.eswa.2007.05.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036662095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1540-6261.1968.tb00843.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038805997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1540-5915.1992.tb00425.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038988524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/for.875", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045529634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11891451_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053225504", 
              "https://doi.org/10.1007/11891451_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11891451_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053225504", 
              "https://doi.org/10.1007/11891451_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.667881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2003.813832", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061716590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1287/mnsc.47.11.1457.10253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064722074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2077859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069740802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3151680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070213963"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009", 
        "datePublishedReg": "2009-01-01", 
        "description": "This study focuses on predicting whether a credit applicant can be categorized as good, bad or borderline from information initially supplied. Given its importance, many researchers have recently worked on an ensemble of classifiers. However, to the best of our knowledge, unrepresentative samples drastically reduce the accuracy of the deployment classifier. Few have attempted to preprocess the input samples into more homogeneous cluster groups and then fit the ensemble classifier accordingly. For this reason, we introduce the concept of class-wise classification as a preprocessing step in order to obtain an efficient ensemble classifier. This strategy would work better than a direct ensemble of classifiers without the preprocessing step. The proposed ensemble classifier is constructed by incorporating several data mining techniques, mainly involving optimal associate binning to discretize continuous values; neural network, support vector machine, and Bayesian network are used to augment the ensemble classifier. In particular, the Markov blanket concept of Bayesian network allows for a natural form of feature selection, which provides a basis for mining association rules.", 
        "editor": [
          {
            "familyName": "Theeramunkong", 
            "givenName": "Thanaruk", 
            "type": "Person"
          }, 
          {
            "familyName": "Kijsirikul", 
            "givenName": "Boonserm", 
            "type": "Person"
          }, 
          {
            "familyName": "Cercone", 
            "givenName": "Nick", 
            "type": "Person"
          }, 
          {
            "familyName": "Ho", 
            "givenName": "Tu-Bao", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-01307-2_33", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-01306-5", 
            "978-3-642-01307-2"
          ], 
          "name": "Advances in Knowledge Discovery and Data Mining", 
          "type": "Book"
        }, 
        "name": "A Data Driven Ensemble Classifier for Credit Scoring Analysis", 
        "pagination": "351-362", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046507756"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-01307-2_33"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "dd8b78f31a13dda929226a583683d50286b17d7cb9b226e6b26c8d14f894458a"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-01307-2_33", 
          "https://app.dimensions.ai/details/publication/pub.1046507756"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T07:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45348_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-01307-2_33"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-01307-2_33'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-01307-2_33'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-01307-2_33'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-01307-2_33'


     

    This table displays all metadata directly associated to this object as RDF triples.

    153 TRIPLES      23 PREDICATES      45 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-01307-2_33 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nef6b2ff409fa432daa21eef76399fd6b
    4 schema:citation sg:pub.10.1007/11891451_29
    5 https://doi.org/10.1002/for.875
    6 https://doi.org/10.1016/b978-1-55860-377-6.50032-3
    7 https://doi.org/10.1016/j.cor.2004.03.017
    8 https://doi.org/10.1016/j.ejor.2006.04.019
    9 https://doi.org/10.1016/j.eswa.2004.12.022
    10 https://doi.org/10.1016/j.eswa.2006.07.007
    11 https://doi.org/10.1016/j.eswa.2007.05.019
    12 https://doi.org/10.1016/j.inffus.2007.07.002
    13 https://doi.org/10.1080/0963818042000216811
    14 https://doi.org/10.1109/34.667881
    15 https://doi.org/10.1109/tnn.2003.813832
    16 https://doi.org/10.1111/j.1540-5915.1992.tb00425.x
    17 https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
    18 https://doi.org/10.1145/1014052.1014074
    19 https://doi.org/10.1287/mnsc.47.11.1457.10253
    20 https://doi.org/10.2307/2077859
    21 https://doi.org/10.2307/3151680
    22 schema:datePublished 2009
    23 schema:datePublishedReg 2009-01-01
    24 schema:description This study focuses on predicting whether a credit applicant can be categorized as good, bad or borderline from information initially supplied. Given its importance, many researchers have recently worked on an ensemble of classifiers. However, to the best of our knowledge, unrepresentative samples drastically reduce the accuracy of the deployment classifier. Few have attempted to preprocess the input samples into more homogeneous cluster groups and then fit the ensemble classifier accordingly. For this reason, we introduce the concept of class-wise classification as a preprocessing step in order to obtain an efficient ensemble classifier. This strategy would work better than a direct ensemble of classifiers without the preprocessing step. The proposed ensemble classifier is constructed by incorporating several data mining techniques, mainly involving optimal associate binning to discretize continuous values; neural network, support vector machine, and Bayesian network are used to augment the ensemble classifier. In particular, the Markov blanket concept of Bayesian network allows for a natural form of feature selection, which provides a basis for mining association rules.
    25 schema:editor N78fb20784e624a56b0574159eb7dd79f
    26 schema:genre chapter
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf Na9b97a4bf83a45c09812a7fce73cf0c7
    30 schema:name A Data Driven Ensemble Classifier for Credit Scoring Analysis
    31 schema:pagination 351-362
    32 schema:productId N0170c61659dc49cc8b1da1fa70bda262
    33 N2d990882fab24cf087e34d632ceac483
    34 N81c58d527f1f408093926c7038809537
    35 schema:publisher N1ab51bac6dcc44d6a4f52f15a639d4bb
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046507756
    37 https://doi.org/10.1007/978-3-642-01307-2_33
    38 schema:sdDatePublished 2019-04-16T07:12
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher Nd628b23bea5e427394414ce4f0bfca32
    41 schema:url https://link.springer.com/10.1007%2F978-3-642-01307-2_33
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset chapters
    44 rdf:type schema:Chapter
    45 N0170c61659dc49cc8b1da1fa70bda262 schema:name readcube_id
    46 schema:value dd8b78f31a13dda929226a583683d50286b17d7cb9b226e6b26c8d14f894458a
    47 rdf:type schema:PropertyValue
    48 N17e3a1428b12401c91b8f32b61b8e846 rdf:first Nae256ebc995049debbbac819091671ff
    49 rdf:rest N1a84050cdb9646cb98a24c9262e7d803
    50 N1a84050cdb9646cb98a24c9262e7d803 rdf:first Nae24496c4cac4fa5ae202a1b933d52e9
    51 rdf:rest Ne27caced24624e4c8e9a4e7e7f284d4b
    52 N1ab51bac6dcc44d6a4f52f15a639d4bb schema:location Berlin, Heidelberg
    53 schema:name Springer Berlin Heidelberg
    54 rdf:type schema:Organisation
    55 N2d990882fab24cf087e34d632ceac483 schema:name dimensions_id
    56 schema:value pub.1046507756
    57 rdf:type schema:PropertyValue
    58 N382d83997b084b9c962c7c6941579f22 schema:name Department of Information Management, Technology and Science Institute of Northern, Taiwan No. 2, Xueyuan Rd., Peitou, 112, Taipei, Taiwan, R.O.C.
    59 rdf:type schema:Organization
    60 N4d9d165b358d4ba281672f1e344936ef schema:familyName Ho
    61 schema:givenName Tu-Bao
    62 rdf:type schema:Person
    63 N78fb20784e624a56b0574159eb7dd79f rdf:first Nda6c5e99624a46bb831711423f1b7c76
    64 rdf:rest N17e3a1428b12401c91b8f32b61b8e846
    65 N80227b6be8d3415785951bbb555df93d rdf:first sg:person.010071403373.03
    66 rdf:rest rdf:nil
    67 N81c58d527f1f408093926c7038809537 schema:name doi
    68 schema:value 10.1007/978-3-642-01307-2_33
    69 rdf:type schema:PropertyValue
    70 N858acce1201a41e1a2cc9a9147abff22 rdf:first sg:person.0670652253.27
    71 rdf:rest N80227b6be8d3415785951bbb555df93d
    72 Na9b97a4bf83a45c09812a7fce73cf0c7 schema:isbn 978-3-642-01306-5
    73 978-3-642-01307-2
    74 schema:name Advances in Knowledge Discovery and Data Mining
    75 rdf:type schema:Book
    76 Nae24496c4cac4fa5ae202a1b933d52e9 schema:familyName Cercone
    77 schema:givenName Nick
    78 rdf:type schema:Person
    79 Nae256ebc995049debbbac819091671ff schema:familyName Kijsirikul
    80 schema:givenName Boonserm
    81 rdf:type schema:Person
    82 Nd628b23bea5e427394414ce4f0bfca32 schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 Nda6c5e99624a46bb831711423f1b7c76 schema:familyName Theeramunkong
    85 schema:givenName Thanaruk
    86 rdf:type schema:Person
    87 Ne27caced24624e4c8e9a4e7e7f284d4b rdf:first N4d9d165b358d4ba281672f1e344936ef
    88 rdf:rest rdf:nil
    89 Ne5cdb2d991474c9da1f6703a33f7e39e schema:name Department of International Trade, Technology and Science Institute of Northern Taiwan, No. 2, Xueyuan Rd., Peitou, 112, Taipei, Taiwan, R.O.C.
    90 rdf:type schema:Organization
    91 Nef6b2ff409fa432daa21eef76399fd6b rdf:first sg:person.012734774203.51
    92 rdf:rest N858acce1201a41e1a2cc9a9147abff22
    93 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Information and Computing Sciences
    95 rdf:type schema:DefinedTerm
    96 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Artificial Intelligence and Image Processing
    98 rdf:type schema:DefinedTerm
    99 sg:person.010071403373.03 schema:affiliation Ne5cdb2d991474c9da1f6703a33f7e39e
    100 schema:familyName Ho
    101 schema:givenName Chia-Ling
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010071403373.03
    103 rdf:type schema:Person
    104 sg:person.012734774203.51 schema:affiliation https://www.grid.ac/institutes/grid.412146.4
    105 schema:familyName Hsieh
    106 schema:givenName Nan-Chen
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734774203.51
    108 rdf:type schema:Person
    109 sg:person.0670652253.27 schema:affiliation N382d83997b084b9c962c7c6941579f22
    110 schema:familyName Hung
    111 schema:givenName Lun-Ping
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670652253.27
    113 rdf:type schema:Person
    114 sg:pub.10.1007/11891451_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053225504
    115 https://doi.org/10.1007/11891451_29
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1002/for.875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045529634
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/b978-1-55860-377-6.50032-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027065619
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/j.cor.2004.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023482737
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/j.ejor.2006.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027611704
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/j.eswa.2004.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028447691
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.eswa.2006.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024847633
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.eswa.2007.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036662095
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.inffus.2007.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018401932
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1080/0963818042000216811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032436024
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1109/34.667881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156743
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1109/tnn.2003.813832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716590
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1111/j.1540-5915.1992.tb00425.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038988524
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1111/j.1540-6261.1968.tb00843.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038805997
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1145/1014052.1014074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020700091
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1287/mnsc.47.11.1457.10253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064722074
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.2307/2077859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069740802
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.2307/3151680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070213963
    150 rdf:type schema:CreativeWork
    151 https://www.grid.ac/institutes/grid.412146.4 schema:alternateName National Taipei University of Nursing and Health Science
    152 schema:name Department of Information Management, National Taipei College of Nursing, No. 365, Min-Ten Road, 11257, Taipei, Taiwan, R.O.C.
    153 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...