An Analysis of Dynamic Mutation Operators for Conformational Sampling View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Alexandru-Adrian Tantar , Nouredine Melab , El-Ghazali Talbi

ABSTRACT

A comparison analysis of dynamic mutation operators is proposed, having the conformational sampling problem as a case study. The analysis is sustained by a parallel Optimal Computing Budget Allocation (OCBA) selection procedure, employed in order to attain computational speedup. A Pearson system distribution based mutation operator is proposed, allowing for a highly flexible construction. As defined by a set of four parameters, the mean, variance, skewness and kurtosis, a large number of distributions can be simulated. As determined by the analysis outcomes, the class of operators exhibiting significant energy minimization or Root Mean Square Deviation (RMSD) bias is identified. Experiments are carried out on a large number of computational resources, allowing for the outline of an automatic a priori operator tuning and selection methodology. Although not presented in this chapter, similar complementary studies have been conducted on intensification operators and local search algorithms. More... »

PAGES

291-323

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-01262-4_11

DOI

http://dx.doi.org/10.1007/978-3-642-01262-4_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002718290


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "INRIA Lille - Nord Europe, DOLPHIN Project Team, LIFL UMR USTL/CNRS 8022, Parc Scientifique de la Haute Borne, 40, avenue Halley, B\u00e2t. A, Park Plaza, 59650, Villeneuve d\u2019Ascq Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.457352.2", 
          "name": [
            "INRIA Lille - Nord Europe, DOLPHIN Project Team, LIFL UMR USTL/CNRS 8022, Parc Scientifique de la Haute Borne, 40, avenue Halley, B\u00e2t. A, Park Plaza, 59650, Villeneuve d\u2019Ascq Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tantar", 
        "givenName": "Alexandru-Adrian", 
        "id": "sg:person.012203126757.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012203126757.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INRIA Lille - Nord Europe, DOLPHIN Project Team, LIFL UMR USTL/CNRS 8022, Parc Scientifique de la Haute Borne, 40, avenue Halley, B\u00e2t. A, Park Plaza, 59650, Villeneuve d\u2019Ascq Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.457352.2", 
          "name": [
            "INRIA Lille - Nord Europe, DOLPHIN Project Team, LIFL UMR USTL/CNRS 8022, Parc Scientifique de la Haute Borne, 40, avenue Halley, B\u00e2t. A, Park Plaza, 59650, Villeneuve d\u2019Ascq Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Melab", 
        "givenName": "Nouredine", 
        "id": "sg:person.010716070451.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716070451.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INRIA Lille - Nord Europe, DOLPHIN Project Team, LIFL UMR USTL/CNRS 8022, Parc Scientifique de la Haute Borne, 40, avenue Halley, B\u00e2t. A, Park Plaza, 59650, Villeneuve d\u2019Ascq Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.457352.2", 
          "name": [
            "INRIA Lille - Nord Europe, DOLPHIN Project Team, LIFL UMR USTL/CNRS 8022, Parc Scientifique de la Haute Borne, 40, avenue Halley, B\u00e2t. A, Park Plaza, 59650, Villeneuve d\u2019Ascq Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Talbi", 
        "givenName": "El-Ghazali", 
        "id": "sg:person.010541644207.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010541644207.95"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "A comparison analysis of dynamic mutation operators is proposed, having the conformational sampling problem as a case study. The analysis is sustained by a parallel Optimal Computing Budget Allocation (OCBA) selection procedure, employed in order to attain computational speedup. A Pearson system distribution based mutation operator is proposed, allowing for a highly flexible construction. As defined by a set of four parameters, the mean, variance, skewness and kurtosis, a large number of distributions can be simulated. As determined by the analysis outcomes, the class of operators exhibiting significant energy minimization or Root Mean Square Deviation (RMSD) bias is identified. Experiments are carried out on a large number of computational resources, allowing for the outline of an automatic a priori operator tuning and selection methodology. Although not presented in this chapter, similar complementary studies have been conducted on intensification operators and local search algorithms.", 
    "editor": [
      {
        "familyName": "Lewis", 
        "givenName": "Andrew", 
        "type": "Person"
      }, 
      {
        "familyName": "Mostaghim", 
        "givenName": "Sanaz", 
        "type": "Person"
      }, 
      {
        "familyName": "Randall", 
        "givenName": "Marcus", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-01262-4_11", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-01261-7", 
        "978-3-642-01262-4"
      ], 
      "name": "Biologically-Inspired Optimisation Methods", 
      "type": "Book"
    }, 
    "keywords": [
      "mutation operator", 
      "local search algorithm", 
      "computational resources", 
      "computational speedup", 
      "search algorithm", 
      "intensification operator", 
      "operator tuning", 
      "large number", 
      "flexible construction", 
      "selection methodology", 
      "operators", 
      "sampling problem", 
      "speedup", 
      "analysis outcomes", 
      "selection procedure", 
      "energy minimization", 
      "algorithm", 
      "case study", 
      "system distribution", 
      "conformational sampling problem", 
      "comparison analysis", 
      "set", 
      "resources", 
      "minimization", 
      "methodology", 
      "tuning", 
      "number", 
      "order", 
      "dynamic mutation operator", 
      "construction", 
      "experiments", 
      "class", 
      "outline", 
      "kurtosis", 
      "analysis", 
      "sampling", 
      "chapter", 
      "parameters", 
      "skewness", 
      "procedure", 
      "distribution", 
      "class of operators", 
      "conformational sampling", 
      "study", 
      "bias", 
      "complementary studies", 
      "outcomes", 
      "problem", 
      "parallel Optimal Computing Budget Allocation (OCBA) selection procedure", 
      "Optimal Computing Budget Allocation (OCBA) selection procedure", 
      "Computing Budget Allocation (OCBA) selection procedure", 
      "Budget Allocation (OCBA) selection procedure", 
      "Allocation (OCBA) selection procedure", 
      "Pearson system distribution", 
      "significant energy minimization", 
      "Root Mean Square Deviation (RMSD) bias", 
      "Mean Square Deviation (RMSD) bias", 
      "Square Deviation (RMSD) bias", 
      "Deviation (RMSD) bias", 
      "similar complementary studies"
    ], 
    "name": "An Analysis of Dynamic Mutation Operators for Conformational Sampling", 
    "pagination": "291-323", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002718290"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-01262-4_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-01262-4_11", 
      "https://app.dimensions.ai/details/publication/pub.1002718290"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_176.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-01262-4_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-01262-4_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-01262-4_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-01262-4_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-01262-4_11'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      23 PREDICATES      85 URIs      78 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-01262-4_11 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nde076637b41146928788c94962e82ec1
4 schema:datePublished 2009
5 schema:datePublishedReg 2009-01-01
6 schema:description A comparison analysis of dynamic mutation operators is proposed, having the conformational sampling problem as a case study. The analysis is sustained by a parallel Optimal Computing Budget Allocation (OCBA) selection procedure, employed in order to attain computational speedup. A Pearson system distribution based mutation operator is proposed, allowing for a highly flexible construction. As defined by a set of four parameters, the mean, variance, skewness and kurtosis, a large number of distributions can be simulated. As determined by the analysis outcomes, the class of operators exhibiting significant energy minimization or Root Mean Square Deviation (RMSD) bias is identified. Experiments are carried out on a large number of computational resources, allowing for the outline of an automatic a priori operator tuning and selection methodology. Although not presented in this chapter, similar complementary studies have been conducted on intensification operators and local search algorithms.
7 schema:editor Ne20ffbbcce684fa28f800ac743de8c46
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nde2768778ab64925b4a22cd9dfdfd6e0
12 schema:keywords Allocation (OCBA) selection procedure
13 Budget Allocation (OCBA) selection procedure
14 Computing Budget Allocation (OCBA) selection procedure
15 Deviation (RMSD) bias
16 Mean Square Deviation (RMSD) bias
17 Optimal Computing Budget Allocation (OCBA) selection procedure
18 Pearson system distribution
19 Root Mean Square Deviation (RMSD) bias
20 Square Deviation (RMSD) bias
21 algorithm
22 analysis
23 analysis outcomes
24 bias
25 case study
26 chapter
27 class
28 class of operators
29 comparison analysis
30 complementary studies
31 computational resources
32 computational speedup
33 conformational sampling
34 conformational sampling problem
35 construction
36 distribution
37 dynamic mutation operator
38 energy minimization
39 experiments
40 flexible construction
41 intensification operator
42 kurtosis
43 large number
44 local search algorithm
45 methodology
46 minimization
47 mutation operator
48 number
49 operator tuning
50 operators
51 order
52 outcomes
53 outline
54 parallel Optimal Computing Budget Allocation (OCBA) selection procedure
55 parameters
56 problem
57 procedure
58 resources
59 sampling
60 sampling problem
61 search algorithm
62 selection methodology
63 selection procedure
64 set
65 significant energy minimization
66 similar complementary studies
67 skewness
68 speedup
69 study
70 system distribution
71 tuning
72 schema:name An Analysis of Dynamic Mutation Operators for Conformational Sampling
73 schema:pagination 291-323
74 schema:productId N34228ebf416a44d48621edcb610381c1
75 Ne4a67e4ae5364bdaace2d34b0536d7e6
76 schema:publisher Ndec19607248b40c4833607a3158d97a7
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002718290
78 https://doi.org/10.1007/978-3-642-01262-4_11
79 schema:sdDatePublished 2022-01-01T19:10
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N9c5907cbec724f01b36ef6e07bea283e
82 schema:url https://doi.org/10.1007/978-3-642-01262-4_11
83 sgo:license sg:explorer/license/
84 sgo:sdDataset chapters
85 rdf:type schema:Chapter
86 N1a73348b283643a3bbb20863adaeccd6 rdf:first sg:person.010716070451.08
87 rdf:rest Nf2421270bc094692a8fea484810f1ccb
88 N23107d22d52f4277a5170bea422b11b2 schema:familyName Randall
89 schema:givenName Marcus
90 rdf:type schema:Person
91 N34228ebf416a44d48621edcb610381c1 schema:name doi
92 schema:value 10.1007/978-3-642-01262-4_11
93 rdf:type schema:PropertyValue
94 N54c3019462f240668e3138bf682d25a0 schema:familyName Lewis
95 schema:givenName Andrew
96 rdf:type schema:Person
97 N9c5907cbec724f01b36ef6e07bea283e schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nd6dd78fa92a04b61913023392d3f8a4a rdf:first Ne3ac2adbc263404194c8305208a1e6ae
100 rdf:rest Nd750ef7d91ad4bddb3fd9126a359c120
101 Nd750ef7d91ad4bddb3fd9126a359c120 rdf:first N23107d22d52f4277a5170bea422b11b2
102 rdf:rest rdf:nil
103 Nde076637b41146928788c94962e82ec1 rdf:first sg:person.012203126757.71
104 rdf:rest N1a73348b283643a3bbb20863adaeccd6
105 Nde2768778ab64925b4a22cd9dfdfd6e0 schema:isbn 978-3-642-01261-7
106 978-3-642-01262-4
107 schema:name Biologically-Inspired Optimisation Methods
108 rdf:type schema:Book
109 Ndec19607248b40c4833607a3158d97a7 schema:name Springer Nature
110 rdf:type schema:Organisation
111 Ne20ffbbcce684fa28f800ac743de8c46 rdf:first N54c3019462f240668e3138bf682d25a0
112 rdf:rest Nd6dd78fa92a04b61913023392d3f8a4a
113 Ne3ac2adbc263404194c8305208a1e6ae schema:familyName Mostaghim
114 schema:givenName Sanaz
115 rdf:type schema:Person
116 Ne4a67e4ae5364bdaace2d34b0536d7e6 schema:name dimensions_id
117 schema:value pub.1002718290
118 rdf:type schema:PropertyValue
119 Nf2421270bc094692a8fea484810f1ccb rdf:first sg:person.010541644207.95
120 rdf:rest rdf:nil
121 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
122 schema:name Information and Computing Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
125 schema:name Artificial Intelligence and Image Processing
126 rdf:type schema:DefinedTerm
127 sg:person.010541644207.95 schema:affiliation grid-institutes:grid.457352.2
128 schema:familyName Talbi
129 schema:givenName El-Ghazali
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010541644207.95
131 rdf:type schema:Person
132 sg:person.010716070451.08 schema:affiliation grid-institutes:grid.457352.2
133 schema:familyName Melab
134 schema:givenName Nouredine
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716070451.08
136 rdf:type schema:Person
137 sg:person.012203126757.71 schema:affiliation grid-institutes:grid.457352.2
138 schema:familyName Tantar
139 schema:givenName Alexandru-Adrian
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012203126757.71
141 rdf:type schema:Person
142 grid-institutes:grid.457352.2 schema:alternateName INRIA Lille - Nord Europe, DOLPHIN Project Team, LIFL UMR USTL/CNRS 8022, Parc Scientifique de la Haute Borne, 40, avenue Halley, Bât. A, Park Plaza, 59650, Villeneuve d’Ascq Cedex, France
143 schema:name INRIA Lille - Nord Europe, DOLPHIN Project Team, LIFL UMR USTL/CNRS 8022, Parc Scientifique de la Haute Borne, 40, avenue Halley, Bât. A, Park Plaza, 59650, Villeneuve d’Ascq Cedex, France
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...