Finding Overlapping Communities Using Disjoint Community Detection Algorithms View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Steve Gregory

ABSTRACT

Many algorithms have been designed to discover community structure in networks. Most of these detect disjoint communities, while a few can find communities that overlap. We propose a new, two-phase, method of detecting overlapping communities. In the first phase, a network is transformed to a new one by splitting vertices, using the idea of split betweenness; in the second phase, the transformed network is processed by a disjoint community detection algorithm. This approach has the potential to convert any disjoint community detection algorithm into an overlapping community detection algorithm. Our experiments, using several “disjoint” algorithms, demonstrate that the method works, producing solutions, and execution times, that are often better than those produced by specialized “overlapping” algorithms. More... »

PAGES

47-61

References to SciGraph publications

  • 2005-06. Uncovering the overlapping community structure of complex networks in nature and society in NATURE
  • 1985-12. Comparing partitions in JOURNAL OF CLASSIFICATION
  • 2007. An Algorithm to Find Overlapping Community Structure in Networks in KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2007
  • 2008. A Fast Algorithm to Find Overlapping Communities in Networks in MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES
  • 2004-03. Detecting community structure in networks in THE EUROPEAN PHYSICAL JOURNAL B
  • 2008-05. Hierarchical structure and the prediction of missing links in networks in NATURE
  • 2005. Efficient Identification of Overlapping Communities in INTELLIGENCE AND SECURITY INFORMATICS
  • Book

    TITLE

    Complex Networks

    ISBN

    978-3-642-01205-1
    978-3-642-01206-8

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-01206-8_5

    DOI

    http://dx.doi.org/10.1007/978-3-642-01206-8_5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008761279


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Bristol", 
              "id": "https://www.grid.ac/institutes/grid.5337.2", 
              "name": [
                "Department of Computer Science, University of Bristol, BS8 1UB, Bristol, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gregory", 
            "givenName": "Steve", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1088/1367-2630/11/3/033015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002733277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/11/3/033015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002733277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.258701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004199555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.258701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004199555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-87479-9_45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004281453", 
              "https://doi.org/10.1007/978-3-540-87479-9_45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11427995_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005992622", 
              "https://doi.org/10.1007/11427995_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11427995_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005992622", 
              "https://doi.org/10.1007/11427995_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006278061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2004-00124-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007257290", 
              "https://doi.org/10.1140/epjb/e2004-00124-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010192610", 
              "https://doi.org/10.1038/nature06830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.68.065103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012830078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.68.065103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012830078"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0601602103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016125157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-5468/2005/09/p09008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017878564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-5468/2005/09/p09008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017878564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.98.2.404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018280471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.122653799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018411012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.74.036104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021120999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.74.036104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021120999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01908075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022323983", 
              "https://doi.org/10.1007/bf01908075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1281192.1281280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028540703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032155732", 
              "https://doi.org/10.1038/nature03607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032155732", 
              "https://doi.org/10.1038/nature03607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032155732", 
              "https://doi.org/10.1038/nature03607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1207/s15327906mbr2302_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034819216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.70.066111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035552384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.70.066111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035552384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74976-9_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035723040", 
              "https://doi.org/10.1007/978-3-540-74976-9_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74976-9_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035723040", 
              "https://doi.org/10.1007/978-3-540-74976-9_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2006.07.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036911183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-5468/2008/10/p10008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037912856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.69.026113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048148225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.69.026113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048148225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.70.056122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060732187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.70.056122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060732187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7155/jgaa.00124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073626410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3033543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1102895783"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009", 
        "datePublishedReg": "2009-01-01", 
        "description": "Many algorithms have been designed to discover community structure in networks. Most of these detect disjoint communities, while a few can find communities that overlap. We propose a new, two-phase, method of detecting overlapping communities. In the first phase, a network is transformed to a new one by splitting vertices, using the idea of split betweenness; in the second phase, the transformed network is processed by a disjoint community detection algorithm. This approach has the potential to convert any disjoint community detection algorithm into an overlapping community detection algorithm. Our experiments, using several \u201cdisjoint\u201d algorithms, demonstrate that the method works, producing solutions, and execution times, that are often better than those produced by specialized \u201coverlapping\u201d algorithms.", 
        "editor": [
          {
            "familyName": "Fortunato", 
            "givenName": "Santo", 
            "type": "Person"
          }, 
          {
            "familyName": "Mangioni", 
            "givenName": "Giuseppe", 
            "type": "Person"
          }, 
          {
            "familyName": "Menezes", 
            "givenName": "Ronaldo", 
            "type": "Person"
          }, 
          {
            "familyName": "Nicosia", 
            "givenName": "Vincenzo", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-01206-8_5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-642-01205-1", 
            "978-3-642-01206-8"
          ], 
          "name": "Complex Networks", 
          "type": "Book"
        }, 
        "name": "Finding Overlapping Communities Using Disjoint Community Detection Algorithms", 
        "pagination": "47-61", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008761279"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-01206-8_5"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "29bdebd3395f3b0f102019575b594894ee603d650c12d6c1b2da7969a43ef460"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-01206-8_5", 
          "https://app.dimensions.ai/details/publication/pub.1008761279"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T07:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45360_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-01206-8_5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-01206-8_5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-01206-8_5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-01206-8_5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-01206-8_5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    161 TRIPLES      23 PREDICATES      52 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-01206-8_5 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N6b55fc43d8894308a9eb7c0ca6c02d44
    4 schema:citation sg:pub.10.1007/11427995_3
    5 sg:pub.10.1007/978-3-540-74976-9_12
    6 sg:pub.10.1007/978-3-540-87479-9_45
    7 sg:pub.10.1007/bf01908075
    8 sg:pub.10.1038/nature03607
    9 sg:pub.10.1038/nature06830
    10 sg:pub.10.1140/epjb/e2004-00124-y
    11 https://doi.org/10.1016/j.physa.2006.07.023
    12 https://doi.org/10.1073/pnas.0601602103
    13 https://doi.org/10.1073/pnas.122653799
    14 https://doi.org/10.1073/pnas.98.2.404
    15 https://doi.org/10.1088/1367-2630/11/3/033015
    16 https://doi.org/10.1088/1742-5468/2005/09/p09008
    17 https://doi.org/10.1088/1742-5468/2008/10/p10008
    18 https://doi.org/10.1093/bioinformatics/btl039
    19 https://doi.org/10.1103/physreve.68.065103
    20 https://doi.org/10.1103/physreve.69.026113
    21 https://doi.org/10.1103/physreve.70.056122
    22 https://doi.org/10.1103/physreve.70.066111
    23 https://doi.org/10.1103/physreve.74.036104
    24 https://doi.org/10.1103/physrevlett.100.258701
    25 https://doi.org/10.1145/1281192.1281280
    26 https://doi.org/10.1207/s15327906mbr2302_6
    27 https://doi.org/10.2307/3033543
    28 https://doi.org/10.7155/jgaa.00124
    29 schema:datePublished 2009
    30 schema:datePublishedReg 2009-01-01
    31 schema:description Many algorithms have been designed to discover community structure in networks. Most of these detect disjoint communities, while a few can find communities that overlap. We propose a new, two-phase, method of detecting overlapping communities. In the first phase, a network is transformed to a new one by splitting vertices, using the idea of split betweenness; in the second phase, the transformed network is processed by a disjoint community detection algorithm. This approach has the potential to convert any disjoint community detection algorithm into an overlapping community detection algorithm. Our experiments, using several “disjoint” algorithms, demonstrate that the method works, producing solutions, and execution times, that are often better than those produced by specialized “overlapping” algorithms.
    32 schema:editor N075d786ef66343089f9760cbc6051c91
    33 schema:genre chapter
    34 schema:inLanguage en
    35 schema:isAccessibleForFree true
    36 schema:isPartOf N11a3a3a717074a48988eef3405be33af
    37 schema:name Finding Overlapping Communities Using Disjoint Community Detection Algorithms
    38 schema:pagination 47-61
    39 schema:productId N030f01aa5c0e4e1d9429b7bd2a28b53f
    40 N039cd9a928e041989a652cb7d3461a4f
    41 Nfb2837a23f21407494ed4497ac0f1555
    42 schema:publisher Nbf2506b45c654eb7a8028e2cceca5320
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008761279
    44 https://doi.org/10.1007/978-3-642-01206-8_5
    45 schema:sdDatePublished 2019-04-16T07:13
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher Ncaab331d18c047598e865c4506537acc
    48 schema:url https://link.springer.com/10.1007%2F978-3-642-01206-8_5
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset chapters
    51 rdf:type schema:Chapter
    52 N030f01aa5c0e4e1d9429b7bd2a28b53f schema:name doi
    53 schema:value 10.1007/978-3-642-01206-8_5
    54 rdf:type schema:PropertyValue
    55 N039cd9a928e041989a652cb7d3461a4f schema:name dimensions_id
    56 schema:value pub.1008761279
    57 rdf:type schema:PropertyValue
    58 N075d786ef66343089f9760cbc6051c91 rdf:first N9a26f4536ae140b9995b1e6a37c2c6f9
    59 rdf:rest N6277713415b941bdbf0a31c3fe7075b9
    60 N11a3a3a717074a48988eef3405be33af schema:isbn 978-3-642-01205-1
    61 978-3-642-01206-8
    62 schema:name Complex Networks
    63 rdf:type schema:Book
    64 N352bcfed65e248a881ea697e00ae3625 schema:familyName Nicosia
    65 schema:givenName Vincenzo
    66 rdf:type schema:Person
    67 N5ae202d2a6d84d3aaf8a0ab80c847933 rdf:first N352bcfed65e248a881ea697e00ae3625
    68 rdf:rest rdf:nil
    69 N6277713415b941bdbf0a31c3fe7075b9 rdf:first N968d06e61f584f69add85a492cbbf776
    70 rdf:rest Nd669c49576ce48e886f650e101b9ef71
    71 N6b55fc43d8894308a9eb7c0ca6c02d44 rdf:first Nd1f9592ad6424b7285159949dd69092d
    72 rdf:rest rdf:nil
    73 N968d06e61f584f69add85a492cbbf776 schema:familyName Mangioni
    74 schema:givenName Giuseppe
    75 rdf:type schema:Person
    76 N9a26f4536ae140b9995b1e6a37c2c6f9 schema:familyName Fortunato
    77 schema:givenName Santo
    78 rdf:type schema:Person
    79 Nbd89ff2446054eb1b77134160a50f46a schema:familyName Menezes
    80 schema:givenName Ronaldo
    81 rdf:type schema:Person
    82 Nbf2506b45c654eb7a8028e2cceca5320 schema:location Berlin, Heidelberg
    83 schema:name Springer Berlin Heidelberg
    84 rdf:type schema:Organisation
    85 Ncaab331d18c047598e865c4506537acc schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 Nd1f9592ad6424b7285159949dd69092d schema:affiliation https://www.grid.ac/institutes/grid.5337.2
    88 schema:familyName Gregory
    89 schema:givenName Steve
    90 rdf:type schema:Person
    91 Nd669c49576ce48e886f650e101b9ef71 rdf:first Nbd89ff2446054eb1b77134160a50f46a
    92 rdf:rest N5ae202d2a6d84d3aaf8a0ab80c847933
    93 Nfb2837a23f21407494ed4497ac0f1555 schema:name readcube_id
    94 schema:value 29bdebd3395f3b0f102019575b594894ee603d650c12d6c1b2da7969a43ef460
    95 rdf:type schema:PropertyValue
    96 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Information and Computing Sciences
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Artificial Intelligence and Image Processing
    101 rdf:type schema:DefinedTerm
    102 sg:pub.10.1007/11427995_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005992622
    103 https://doi.org/10.1007/11427995_3
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/978-3-540-74976-9_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035723040
    106 https://doi.org/10.1007/978-3-540-74976-9_12
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/978-3-540-87479-9_45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004281453
    109 https://doi.org/10.1007/978-3-540-87479-9_45
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/bf01908075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022323983
    112 https://doi.org/10.1007/bf01908075
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1038/nature03607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032155732
    115 https://doi.org/10.1038/nature03607
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1038/nature06830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010192610
    118 https://doi.org/10.1038/nature06830
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1140/epjb/e2004-00124-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007257290
    121 https://doi.org/10.1140/epjb/e2004-00124-y
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/j.physa.2006.07.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036911183
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1073/pnas.0601602103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016125157
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1073/pnas.122653799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411012
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1073/pnas.98.2.404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018280471
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1088/1367-2630/11/3/033015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002733277
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1088/1742-5468/2005/09/p09008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017878564
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1088/1742-5468/2008/10/p10008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037912856
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1093/bioinformatics/btl039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006278061
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1103/physreve.68.065103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012830078
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1103/physreve.69.026113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048148225
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1103/physreve.70.056122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060732187
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1103/physreve.70.066111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035552384
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1103/physreve.74.036104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021120999
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1103/physrevlett.100.258701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004199555
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1145/1281192.1281280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028540703
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1207/s15327906mbr2302_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034819216
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.2307/3033543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102895783
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.7155/jgaa.00124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073626410
    158 rdf:type schema:CreativeWork
    159 https://www.grid.ac/institutes/grid.5337.2 schema:alternateName University of Bristol
    160 schema:name Department of Computer Science, University of Bristol, BS8 1UB, Bristol, England
    161 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...