Using Second Order Statistics to Enhance Automated Image Annotation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Ainhoa Llorente , Stefan Rüger

ABSTRACT

We examine whether a traditional automated annotation system can be improved by using background knowledge. Traditional means any machine learning approach together with image analysis techniques. We use as a baseline for our experiments the work done by Yavlinsky et al. [1] who deployed non-parametric density estimation. We observe that probabilistic image analysis by itself is not enough to describe the rich semantics of an image. Our hypothesis is that more accurate annotations can be produced by introducing additional knowledge in the form of statistical co-occurrence of terms. This is provided by the context of images that otherwise independent keyword generation would miss. We test our algorithm with two different datasets: Corel 5k and ImageCLEF 2008. For the Corel 5k dataset, we obtain significantly better results while our algorithm appears in the top quartile of all methods submitted in ImageCLEF 2008. More... »

PAGES

570-577

Book

TITLE

Advances in Information Retrieval

ISBN

978-3-642-00957-0
978-3-642-00958-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-00958-7_52

DOI

http://dx.doi.org/10.1007/978-3-642-00958-7_52

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021433401


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Open University", 
          "id": "https://www.grid.ac/institutes/grid.10837.3d", 
          "name": [
            "Knowledge Media Institute, The Open University, Walton Hall, MK7 6AA, Milton Keynes, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Llorente", 
        "givenName": "Ainhoa", 
        "id": "sg:person.012775002107.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012775002107.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Open University", 
          "id": "https://www.grid.ac/institutes/grid.10837.3d", 
          "name": [
            "Knowledge Media Institute, The Open University, Walton Hall, MK7 6AA, Milton Keynes, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "R\u00fcger", 
        "givenName": "Stefan", 
        "id": "sg:person.013375677533.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013375677533.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1282280.1282284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009266420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88690-7_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009765396", 
          "https://doi.org/10.1007/978-3-540-88690-7_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88690-7_24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009765396", 
          "https://doi.org/10.1007/978-3-540-88690-7_24"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01690969108406936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010893796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11526346_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012604628", 
          "https://doi.org/10.1007/11526346_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11526346_54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012604628", 
          "https://doi.org/10.1007/11526346_54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2005.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013701558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1027527.1027732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016237565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04447-2_65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027852860", 
          "https://doi.org/10.1007/978-3-642-04447-2_65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1178677.1178689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037571801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-47979-1_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040055518", 
          "https://doi.org/10.1007/3-540-47979-1_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1282280.1282369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048045132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1101149.1101305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051369458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/860435.860459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053524475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.21.60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099341556"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "We examine whether a traditional automated annotation system can be improved by using background knowledge. Traditional means any machine learning approach together with image analysis techniques. We use as a baseline for our experiments the work done by Yavlinsky et al. [1] who deployed non-parametric density estimation. We observe that probabilistic image analysis by itself is not enough to describe the rich semantics of an image. Our hypothesis is that more accurate annotations can be produced by introducing additional knowledge in the form of statistical co-occurrence of terms. This is provided by the context of images that otherwise independent keyword generation would miss. We test our algorithm with two different datasets: Corel 5k and ImageCLEF 2008. For the Corel 5k dataset, we obtain significantly better results while our algorithm appears in the top quartile of all methods submitted in ImageCLEF 2008.", 
    "editor": [
      {
        "familyName": "Boughanem", 
        "givenName": "Mohand", 
        "type": "Person"
      }, 
      {
        "familyName": "Berrut", 
        "givenName": "Catherine", 
        "type": "Person"
      }, 
      {
        "familyName": "Mothe", 
        "givenName": "Josiane", 
        "type": "Person"
      }, 
      {
        "familyName": "Soule-Dupuy", 
        "givenName": "Chantal", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-00958-7_52", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-00957-0", 
        "978-3-642-00958-7"
      ], 
      "name": "Advances in Information Retrieval", 
      "type": "Book"
    }, 
    "name": "Using Second Order Statistics to Enhance Automated Image Annotation", 
    "pagination": "570-577", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021433401"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-00958-7_52"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "661e40d91302e3ce91884602b4cab52ae8e70cb04ccb1e7a8c891e3783745f2e"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-00958-7_52", 
      "https://app.dimensions.ai/details/publication/pub.1021433401"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000353_0000000353/records_45339_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-642-00958-7_52"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00958-7_52'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00958-7_52'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00958-7_52'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00958-7_52'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-00958-7_52 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0cd7c76f2b714014b48233aa91109252
4 schema:citation sg:pub.10.1007/11526346_54
5 sg:pub.10.1007/3-540-47979-1_7
6 sg:pub.10.1007/978-3-540-88690-7_24
7 sg:pub.10.1007/978-3-642-04447-2_65
8 https://doi.org/10.1016/j.patrec.2005.10.010
9 https://doi.org/10.1080/01690969108406936
10 https://doi.org/10.1145/1027527.1027732
11 https://doi.org/10.1145/1101149.1101305
12 https://doi.org/10.1145/1178677.1178689
13 https://doi.org/10.1145/1282280.1282284
14 https://doi.org/10.1145/1282280.1282369
15 https://doi.org/10.1145/860435.860459
16 https://doi.org/10.5244/c.21.60
17 schema:datePublished 2009
18 schema:datePublishedReg 2009-01-01
19 schema:description We examine whether a traditional automated annotation system can be improved by using background knowledge. Traditional means any machine learning approach together with image analysis techniques. We use as a baseline for our experiments the work done by Yavlinsky et al. [1] who deployed non-parametric density estimation. We observe that probabilistic image analysis by itself is not enough to describe the rich semantics of an image. Our hypothesis is that more accurate annotations can be produced by introducing additional knowledge in the form of statistical co-occurrence of terms. This is provided by the context of images that otherwise independent keyword generation would miss. We test our algorithm with two different datasets: Corel 5k and ImageCLEF 2008. For the Corel 5k dataset, we obtain significantly better results while our algorithm appears in the top quartile of all methods submitted in ImageCLEF 2008.
20 schema:editor N17cccc188ca64475b1c8d824d4846d61
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf Nd2e4466aa6b34359976d39d75ae2f992
25 schema:name Using Second Order Statistics to Enhance Automated Image Annotation
26 schema:pagination 570-577
27 schema:productId N3e5229c1a11e42c68ac42597005d1be7
28 N8099307fa5e94a61bd5b1f002dfe7c56
29 N9441624acfdf43488877894309b4876e
30 schema:publisher N60a42d684fb042968a2933cb239e098d
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021433401
32 https://doi.org/10.1007/978-3-642-00958-7_52
33 schema:sdDatePublished 2019-04-16T07:10
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N8b558773265e44f6b0ea2885046d3680
36 schema:url https://link.springer.com/10.1007%2F978-3-642-00958-7_52
37 sgo:license sg:explorer/license/
38 sgo:sdDataset chapters
39 rdf:type schema:Chapter
40 N0cd7c76f2b714014b48233aa91109252 rdf:first sg:person.012775002107.61
41 rdf:rest Nc5f9298649c94f48a7a4bc370885592e
42 N17cccc188ca64475b1c8d824d4846d61 rdf:first Nba28ddd8dc61450c9d1bf481abb1aefe
43 rdf:rest Nab7b2fe186544f28accb0d95ce7267c3
44 N34ec04f3d28949ed9db38abf5f39df6f schema:familyName Mothe
45 schema:givenName Josiane
46 rdf:type schema:Person
47 N3e5229c1a11e42c68ac42597005d1be7 schema:name doi
48 schema:value 10.1007/978-3-642-00958-7_52
49 rdf:type schema:PropertyValue
50 N4b524463517940bf9a7290c0e29d11a2 schema:familyName Soule-Dupuy
51 schema:givenName Chantal
52 rdf:type schema:Person
53 N5893ed646d3b4429a648ce42c3d927e8 rdf:first N4b524463517940bf9a7290c0e29d11a2
54 rdf:rest rdf:nil
55 N60a42d684fb042968a2933cb239e098d schema:location Berlin, Heidelberg
56 schema:name Springer Berlin Heidelberg
57 rdf:type schema:Organisation
58 N8099307fa5e94a61bd5b1f002dfe7c56 schema:name dimensions_id
59 schema:value pub.1021433401
60 rdf:type schema:PropertyValue
61 N8b558773265e44f6b0ea2885046d3680 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N9441624acfdf43488877894309b4876e schema:name readcube_id
64 schema:value 661e40d91302e3ce91884602b4cab52ae8e70cb04ccb1e7a8c891e3783745f2e
65 rdf:type schema:PropertyValue
66 Nab7b2fe186544f28accb0d95ce7267c3 rdf:first Nac759079269347a6b55e54345046aceb
67 rdf:rest Nabfff3c678624b91b167ea67d2eb43ba
68 Nabfff3c678624b91b167ea67d2eb43ba rdf:first N34ec04f3d28949ed9db38abf5f39df6f
69 rdf:rest N5893ed646d3b4429a648ce42c3d927e8
70 Nac759079269347a6b55e54345046aceb schema:familyName Berrut
71 schema:givenName Catherine
72 rdf:type schema:Person
73 Nba28ddd8dc61450c9d1bf481abb1aefe schema:familyName Boughanem
74 schema:givenName Mohand
75 rdf:type schema:Person
76 Nc5f9298649c94f48a7a4bc370885592e rdf:first sg:person.013375677533.85
77 rdf:rest rdf:nil
78 Nd2e4466aa6b34359976d39d75ae2f992 schema:isbn 978-3-642-00957-0
79 978-3-642-00958-7
80 schema:name Advances in Information Retrieval
81 rdf:type schema:Book
82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information and Computing Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
86 schema:name Artificial Intelligence and Image Processing
87 rdf:type schema:DefinedTerm
88 sg:person.012775002107.61 schema:affiliation https://www.grid.ac/institutes/grid.10837.3d
89 schema:familyName Llorente
90 schema:givenName Ainhoa
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012775002107.61
92 rdf:type schema:Person
93 sg:person.013375677533.85 schema:affiliation https://www.grid.ac/institutes/grid.10837.3d
94 schema:familyName Rüger
95 schema:givenName Stefan
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013375677533.85
97 rdf:type schema:Person
98 sg:pub.10.1007/11526346_54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012604628
99 https://doi.org/10.1007/11526346_54
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/3-540-47979-1_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040055518
102 https://doi.org/10.1007/3-540-47979-1_7
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/978-3-540-88690-7_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009765396
105 https://doi.org/10.1007/978-3-540-88690-7_24
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/978-3-642-04447-2_65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027852860
108 https://doi.org/10.1007/978-3-642-04447-2_65
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.patrec.2005.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013701558
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1080/01690969108406936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010893796
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1145/1027527.1027732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016237565
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1145/1101149.1101305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051369458
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1145/1178677.1178689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037571801
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1145/1282280.1282284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009266420
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1145/1282280.1282369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048045132
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1145/860435.860459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053524475
125 rdf:type schema:CreativeWork
126 https://doi.org/10.5244/c.21.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099341556
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.10837.3d schema:alternateName The Open University
129 schema:name Knowledge Media Institute, The Open University, Walton Hall, MK7 6AA, Milton Keynes, United Kingdom
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...