Ontology type: schema:Chapter
2009-06-02
AUTHORSJürgen Müller , Liliane Biskupek , Jürgen Oberst , Ulrich Schreiber
ABSTRACTLunar Laser Ranging (LLR) has provided observations for more than 36 years. There is enormous science potential of LLR to further our understanding of the dynamics of the Earth-Moon system (e.g.Earth orientation parameters (EOP) or the secular increase of the Earth-Moon distance: 3.8 cm/year) and to determine relativistic quantities such as the equivalence principle or any time variation of the gravitational constant. Here, we discuss the potential of LLR to contribute to the realisation of various reference systems, i.e. the terrestrial and selenocentric frame, but also thedynamic realisation of the celestial reference system, where most benefit is obtained from the long-term stability of the lunar orbit. Because of the tight link budget, only a handful terrestrial laser ranging stations are capable to routinely carry out the distance measurements (at cm level of precision). Therefore, we propose a next-generation lunar ranging experiment. Lunar landers shall deploy laser ’beacons’pointing at Earth.We estimate that the received pulse strength froma50 mJ Laser is 3 orders of magnitude larger than at classical LLR. Such laser shots could be received by most existing Satellite Laser Ranging (SLR) stations and measurement accuracies at mm level can then be accomplished. The contribution to the realisations of the aforementioned geodetic reference systems could be further improved.If in addition radio transponders were deployed at the same locations, a strong tie to the kinematic VLBI system couldbe established. More... »
PAGES55-59
Geodetic Reference Frames
ISBN
978-3-642-00859-7
978-3-642-00860-3
http://scigraph.springernature.com/pub.10.1007/978-3-642-00860-3_8
DOIhttp://dx.doi.org/10.1007/978-3-642-00860-3_8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1009163330
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Geomatic Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institut f\u00fcr Erdmessung, Leibniz Universit\u00e4t Hannover, Schneiderberg 50, 30167 Hannover, Germany",
"id": "http://www.grid.ac/institutes/grid.9122.8",
"name": [
"Institut f\u00fcr Erdmessung, Leibniz Universit\u00e4t Hannover, Schneiderberg 50, 30167 Hannover, Germany"
],
"type": "Organization"
},
"familyName": "M\u00fcller",
"givenName": "J\u00fcrgen",
"id": "sg:person.012520207735.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012520207735.29"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut f\u00fcr Erdmessung, Leibniz Universit\u00e4t Hannover, Schneiderberg 50, 30167 Hannover, Germany",
"id": "http://www.grid.ac/institutes/grid.9122.8",
"name": [
"Institut f\u00fcr Erdmessung, Leibniz Universit\u00e4t Hannover, Schneiderberg 50, 30167 Hannover, Germany"
],
"type": "Organization"
},
"familyName": "Biskupek",
"givenName": "Liliane",
"id": "sg:person.014615210505.32",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014615210505.32"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "German Aerospace Center, Institute of Planetary Research, Berlin, Germany",
"id": "http://www.grid.ac/institutes/grid.7551.6",
"name": [
"German Aerospace Center, Institute of Planetary Research, Berlin, Germany"
],
"type": "Organization"
},
"familyName": "Oberst",
"givenName": "J\u00fcrgen",
"id": "sg:person.0642304505.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642304505.83"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Forschungseinrichtung Satellitengeod\u00e4sie, Fundamentalstation Wettzell, 93444 Bad K\u00f6tzting, Germany",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Forschungseinrichtung Satellitengeod\u00e4sie, Fundamentalstation Wettzell, 93444 Bad K\u00f6tzting, Germany"
],
"type": "Organization"
},
"familyName": "Schreiber",
"givenName": "Ulrich",
"id": "sg:person.01203042610.59",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203042610.59"
],
"type": "Person"
}
],
"datePublished": "2009-06-02",
"datePublishedReg": "2009-06-02",
"description": "Lunar Laser Ranging (LLR) has provided observations for more than 36 years. There is enormous science potential of LLR to further our understanding of the dynamics of the Earth-Moon system (e.g.Earth orientation parameters (EOP) or the secular increase of the Earth-Moon distance: 3.8\u2009cm/year) and to determine relativistic quantities such as the equivalence principle or any time variation of the gravitational constant. Here, we discuss the potential of LLR to contribute to the realisation of various reference systems, i.e. the terrestrial and selenocentric frame, but also thedynamic realisation of the celestial reference system, where most benefit is obtained from the long-term stability of the lunar orbit. Because of the tight link budget, only a handful terrestrial laser ranging stations are capable to routinely carry out the distance measurements (at cm level of precision). Therefore, we propose a next-generation lunar ranging experiment. Lunar landers shall deploy laser \u2019beacons\u2019pointing at Earth.We estimate that the received pulse strength froma50 mJ Laser is 3 orders of magnitude larger than at classical LLR. Such laser shots could be received by most existing Satellite Laser Ranging (SLR) stations and measurement accuracies at mm level can then be accomplished. The contribution to the realisations of the aforementioned geodetic reference systems could be further improved.If in addition radio transponders were deployed at the same locations, a strong tie to the kinematic VLBI system couldbe established.",
"editor": [
{
"familyName": "Drewes",
"givenName": "Hermann",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-642-00860-3_8",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-642-00859-7",
"978-3-642-00860-3"
],
"name": "Geodetic Reference Frames",
"type": "Book"
},
"keywords": [
"lunar laser",
"Celestial Reference System",
"mJ laser",
"relativistic quantities",
"laser shots",
"laser",
"gravitational constant",
"satellite laser",
"equivalence principle",
"lunar orbit",
"science potential",
"Earth-Moon system",
"orders of magnitude",
"geodetic reference system",
"distance measurements",
"radio transponder",
"measurement accuracy",
"reference system",
"time variation",
"lunar lander",
"link budget",
"terrestrial laser",
"long-term stability",
"orbit",
"same location",
"stations",
"shot",
"LLR",
"Earth",
"measurements",
"lander",
"realisation",
"constants",
"dynamics",
"contribution",
"magnitude",
"budget",
"potential",
"system",
"experiments",
"variation",
"transponders",
"location",
"quantity",
"principles",
"order",
"stability",
"frame",
"couldbe",
"accuracy",
"understanding",
"years",
"levels",
"strong ties",
"observations",
"benefits",
"most benefit",
"ties"
],
"name": "Contribution of Lunar Laser Ranging to Realise Geodetic Reference Systems",
"pagination": "55-59",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1009163330"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-642-00860-3_8"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-642-00860-3_8",
"https://app.dimensions.ai/details/publication/pub.1009163330"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:44",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_242.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-642-00860-3_8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00860-3_8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00860-3_8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00860-3_8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00860-3_8'
This table displays all metadata directly associated to this object as RDF triples.
145 TRIPLES
23 PREDICATES
83 URIs
76 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-642-00860-3_8 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0909 |
3 | ″ | schema:author | N60390b09b1964236bcef24b9445d63a9 |
4 | ″ | schema:datePublished | 2009-06-02 |
5 | ″ | schema:datePublishedReg | 2009-06-02 |
6 | ″ | schema:description | Lunar Laser Ranging (LLR) has provided observations for more than 36 years. There is enormous science potential of LLR to further our understanding of the dynamics of the Earth-Moon system (e.g.Earth orientation parameters (EOP) or the secular increase of the Earth-Moon distance: 3.8 cm/year) and to determine relativistic quantities such as the equivalence principle or any time variation of the gravitational constant. Here, we discuss the potential of LLR to contribute to the realisation of various reference systems, i.e. the terrestrial and selenocentric frame, but also thedynamic realisation of the celestial reference system, where most benefit is obtained from the long-term stability of the lunar orbit. Because of the tight link budget, only a handful terrestrial laser ranging stations are capable to routinely carry out the distance measurements (at cm level of precision). Therefore, we propose a next-generation lunar ranging experiment. Lunar landers shall deploy laser ’beacons’pointing at Earth.We estimate that the received pulse strength froma50 mJ Laser is 3 orders of magnitude larger than at classical LLR. Such laser shots could be received by most existing Satellite Laser Ranging (SLR) stations and measurement accuracies at mm level can then be accomplished. The contribution to the realisations of the aforementioned geodetic reference systems could be further improved.If in addition radio transponders were deployed at the same locations, a strong tie to the kinematic VLBI system couldbe established. |
7 | ″ | schema:editor | Ned381ec6554240d49c321bc2cd8b47a1 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N1eff531319d34ab083fd6b501faac7ef |
12 | ″ | schema:keywords | Celestial Reference System |
13 | ″ | ″ | Earth |
14 | ″ | ″ | Earth-Moon system |
15 | ″ | ″ | LLR |
16 | ″ | ″ | accuracy |
17 | ″ | ″ | benefits |
18 | ″ | ″ | budget |
19 | ″ | ″ | constants |
20 | ″ | ″ | contribution |
21 | ″ | ″ | couldbe |
22 | ″ | ″ | distance measurements |
23 | ″ | ″ | dynamics |
24 | ″ | ″ | equivalence principle |
25 | ″ | ″ | experiments |
26 | ″ | ″ | frame |
27 | ″ | ″ | geodetic reference system |
28 | ″ | ″ | gravitational constant |
29 | ″ | ″ | lander |
30 | ″ | ″ | laser |
31 | ″ | ″ | laser shots |
32 | ″ | ″ | levels |
33 | ″ | ″ | link budget |
34 | ″ | ″ | location |
35 | ″ | ″ | long-term stability |
36 | ″ | ″ | lunar lander |
37 | ″ | ″ | lunar laser |
38 | ″ | ″ | lunar orbit |
39 | ″ | ″ | mJ laser |
40 | ″ | ″ | magnitude |
41 | ″ | ″ | measurement accuracy |
42 | ″ | ″ | measurements |
43 | ″ | ″ | most benefit |
44 | ″ | ″ | observations |
45 | ″ | ″ | orbit |
46 | ″ | ″ | order |
47 | ″ | ″ | orders of magnitude |
48 | ″ | ″ | potential |
49 | ″ | ″ | principles |
50 | ″ | ″ | quantity |
51 | ″ | ″ | radio transponder |
52 | ″ | ″ | realisation |
53 | ″ | ″ | reference system |
54 | ″ | ″ | relativistic quantities |
55 | ″ | ″ | same location |
56 | ″ | ″ | satellite laser |
57 | ″ | ″ | science potential |
58 | ″ | ″ | shot |
59 | ″ | ″ | stability |
60 | ″ | ″ | stations |
61 | ″ | ″ | strong ties |
62 | ″ | ″ | system |
63 | ″ | ″ | terrestrial laser |
64 | ″ | ″ | ties |
65 | ″ | ″ | time variation |
66 | ″ | ″ | transponders |
67 | ″ | ″ | understanding |
68 | ″ | ″ | variation |
69 | ″ | ″ | years |
70 | ″ | schema:name | Contribution of Lunar Laser Ranging to Realise Geodetic Reference Systems |
71 | ″ | schema:pagination | 55-59 |
72 | ″ | schema:productId | Nd92d32b5751d45be9a3eebb7170c7290 |
73 | ″ | ″ | Ndecb7c8530934d6f85e80f53ef270670 |
74 | ″ | schema:publisher | N133b744ec5ea47fc87a3c1808b3ceb16 |
75 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1009163330 |
76 | ″ | ″ | https://doi.org/10.1007/978-3-642-00860-3_8 |
77 | ″ | schema:sdDatePublished | 2022-05-20T07:44 |
78 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
79 | ″ | schema:sdPublisher | Na8b6cf25fe5148bba8f3fa94d9cb1ab4 |
80 | ″ | schema:url | https://doi.org/10.1007/978-3-642-00860-3_8 |
81 | ″ | sgo:license | sg:explorer/license/ |
82 | ″ | sgo:sdDataset | chapters |
83 | ″ | rdf:type | schema:Chapter |
84 | N030a991752d3436ea626791855a072a5 | schema:familyName | Drewes |
85 | ″ | schema:givenName | Hermann |
86 | ″ | rdf:type | schema:Person |
87 | N133b744ec5ea47fc87a3c1808b3ceb16 | schema:name | Springer Nature |
88 | ″ | rdf:type | schema:Organisation |
89 | N1eff531319d34ab083fd6b501faac7ef | schema:isbn | 978-3-642-00859-7 |
90 | ″ | ″ | 978-3-642-00860-3 |
91 | ″ | schema:name | Geodetic Reference Frames |
92 | ″ | rdf:type | schema:Book |
93 | N60390b09b1964236bcef24b9445d63a9 | rdf:first | sg:person.012520207735.29 |
94 | ″ | rdf:rest | N910a0406fc024856b353cef600169624 |
95 | N910a0406fc024856b353cef600169624 | rdf:first | sg:person.014615210505.32 |
96 | ″ | rdf:rest | Nec6ee0fc9ec34e53937f10d87489045e |
97 | Na8b6cf25fe5148bba8f3fa94d9cb1ab4 | schema:name | Springer Nature - SN SciGraph project |
98 | ″ | rdf:type | schema:Organization |
99 | Na991d0715eb84ba680220e3b85d4db34 | rdf:first | sg:person.01203042610.59 |
100 | ″ | rdf:rest | rdf:nil |
101 | Nd92d32b5751d45be9a3eebb7170c7290 | schema:name | dimensions_id |
102 | ″ | schema:value | pub.1009163330 |
103 | ″ | rdf:type | schema:PropertyValue |
104 | Ndecb7c8530934d6f85e80f53ef270670 | schema:name | doi |
105 | ″ | schema:value | 10.1007/978-3-642-00860-3_8 |
106 | ″ | rdf:type | schema:PropertyValue |
107 | Nec6ee0fc9ec34e53937f10d87489045e | rdf:first | sg:person.0642304505.83 |
108 | ″ | rdf:rest | Na991d0715eb84ba680220e3b85d4db34 |
109 | Ned381ec6554240d49c321bc2cd8b47a1 | rdf:first | N030a991752d3436ea626791855a072a5 |
110 | ″ | rdf:rest | rdf:nil |
111 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
112 | ″ | schema:name | Engineering |
113 | ″ | rdf:type | schema:DefinedTerm |
114 | anzsrc-for:0909 | schema:inDefinedTermSet | anzsrc-for: |
115 | ″ | schema:name | Geomatic Engineering |
116 | ″ | rdf:type | schema:DefinedTerm |
117 | sg:person.01203042610.59 | schema:affiliation | grid-institutes:None |
118 | ″ | schema:familyName | Schreiber |
119 | ″ | schema:givenName | Ulrich |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203042610.59 |
121 | ″ | rdf:type | schema:Person |
122 | sg:person.012520207735.29 | schema:affiliation | grid-institutes:grid.9122.8 |
123 | ″ | schema:familyName | Müller |
124 | ″ | schema:givenName | Jürgen |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012520207735.29 |
126 | ″ | rdf:type | schema:Person |
127 | sg:person.014615210505.32 | schema:affiliation | grid-institutes:grid.9122.8 |
128 | ″ | schema:familyName | Biskupek |
129 | ″ | schema:givenName | Liliane |
130 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014615210505.32 |
131 | ″ | rdf:type | schema:Person |
132 | sg:person.0642304505.83 | schema:affiliation | grid-institutes:grid.7551.6 |
133 | ″ | schema:familyName | Oberst |
134 | ″ | schema:givenName | Jürgen |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642304505.83 |
136 | ″ | rdf:type | schema:Person |
137 | grid-institutes:None | schema:alternateName | Forschungseinrichtung Satellitengeodäsie, Fundamentalstation Wettzell, 93444 Bad Kötzting, Germany |
138 | ″ | schema:name | Forschungseinrichtung Satellitengeodäsie, Fundamentalstation Wettzell, 93444 Bad Kötzting, Germany |
139 | ″ | rdf:type | schema:Organization |
140 | grid-institutes:grid.7551.6 | schema:alternateName | German Aerospace Center, Institute of Planetary Research, Berlin, Germany |
141 | ″ | schema:name | German Aerospace Center, Institute of Planetary Research, Berlin, Germany |
142 | ″ | rdf:type | schema:Organization |
143 | grid-institutes:grid.9122.8 | schema:alternateName | Institut für Erdmessung, Leibniz Universität Hannover, Schneiderberg 50, 30167 Hannover, Germany |
144 | ″ | schema:name | Institut für Erdmessung, Leibniz Universität Hannover, Schneiderberg 50, 30167 Hannover, Germany |
145 | ″ | rdf:type | schema:Organization |