Contribution of Lunar Laser Ranging to Realise Geodetic Reference Systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009-06-02

AUTHORS

Jürgen Müller , Liliane Biskupek , Jürgen Oberst , Ulrich Schreiber

ABSTRACT

Lunar Laser Ranging (LLR) has provided observations for more than 36 years. There is enormous science potential of LLR to further our understanding of the dynamics of the Earth-Moon system (e.g.Earth orientation parameters (EOP) or the secular increase of the Earth-Moon distance: 3.8 cm/year) and to determine relativistic quantities such as the equivalence principle or any time variation of the gravitational constant. Here, we discuss the potential of LLR to contribute to the realisation of various reference systems, i.e. the terrestrial and selenocentric frame, but also thedynamic realisation of the celestial reference system, where most benefit is obtained from the long-term stability of the lunar orbit. Because of the tight link budget, only a handful terrestrial laser ranging stations are capable to routinely carry out the distance measurements (at cm level of precision). Therefore, we propose a next-generation lunar ranging experiment. Lunar landers shall deploy laser ’beacons’pointing at Earth.We estimate that the received pulse strength froma50 mJ Laser is 3 orders of magnitude larger than at classical LLR. Such laser shots could be received by most existing Satellite Laser Ranging (SLR) stations and measurement accuracies at mm level can then be accomplished. The contribution to the realisations of the aforementioned geodetic reference systems could be further improved.If in addition radio transponders were deployed at the same locations, a strong tie to the kinematic VLBI system couldbe established. More... »

PAGES

55-59

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-00860-3_8

DOI

http://dx.doi.org/10.1007/978-3-642-00860-3_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009163330


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Erdmessung, Leibniz Universit\u00e4t Hannover, Schneiderberg 50, 30167 Hannover, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Erdmessung, Leibniz Universit\u00e4t Hannover, Schneiderberg 50, 30167 Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller", 
        "givenName": "J\u00fcrgen", 
        "id": "sg:person.012520207735.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012520207735.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Erdmessung, Leibniz Universit\u00e4t Hannover, Schneiderberg 50, 30167 Hannover, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Erdmessung, Leibniz Universit\u00e4t Hannover, Schneiderberg 50, 30167 Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Biskupek", 
        "givenName": "Liliane", 
        "id": "sg:person.014615210505.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014615210505.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "German Aerospace Center, Institute of Planetary Research, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7551.6", 
          "name": [
            "German Aerospace Center, Institute of Planetary Research, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oberst", 
        "givenName": "J\u00fcrgen", 
        "id": "sg:person.0642304505.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642304505.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forschungseinrichtung Satellitengeod\u00e4sie, Fundamentalstation Wettzell, 93444 Bad K\u00f6tzting, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Forschungseinrichtung Satellitengeod\u00e4sie, Fundamentalstation Wettzell, 93444 Bad K\u00f6tzting, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schreiber", 
        "givenName": "Ulrich", 
        "id": "sg:person.01203042610.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203042610.59"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009-06-02", 
    "datePublishedReg": "2009-06-02", 
    "description": "Lunar Laser Ranging (LLR) has provided observations for more than 36 years. There is enormous science potential of LLR to further our understanding of the dynamics of the Earth-Moon system (e.g.Earth orientation parameters (EOP) or the secular increase of the Earth-Moon distance: 3.8\u2009cm/year) and to determine relativistic quantities such as the equivalence principle or any time variation of the gravitational constant. Here, we discuss the potential of LLR to contribute to the realisation of various reference systems, i.e. the terrestrial and selenocentric frame, but also thedynamic realisation of the celestial reference system, where most benefit is obtained from the long-term stability of the lunar orbit. Because of the tight link budget, only a handful terrestrial laser ranging stations are capable to routinely carry out the distance measurements (at cm level of precision). Therefore, we propose a next-generation lunar ranging experiment. Lunar landers shall deploy laser \u2019beacons\u2019pointing at Earth.We estimate that the received pulse strength froma50 mJ Laser is 3 orders of magnitude larger than at classical LLR. Such laser shots could be received by most existing Satellite Laser Ranging (SLR) stations and measurement accuracies at mm level can then be accomplished. The contribution to the realisations of the aforementioned geodetic reference systems could be further improved.If in addition radio transponders were deployed at the same locations, a strong tie to the kinematic VLBI system couldbe established.", 
    "editor": [
      {
        "familyName": "Drewes", 
        "givenName": "Hermann", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-00860-3_8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-00859-7", 
        "978-3-642-00860-3"
      ], 
      "name": "Geodetic Reference Frames", 
      "type": "Book"
    }, 
    "keywords": [
      "lunar laser", 
      "Celestial Reference System", 
      "mJ laser", 
      "relativistic quantities", 
      "laser shots", 
      "laser", 
      "gravitational constant", 
      "satellite laser", 
      "equivalence principle", 
      "lunar orbit", 
      "science potential", 
      "Earth-Moon system", 
      "orders of magnitude", 
      "geodetic reference system", 
      "distance measurements", 
      "radio transponder", 
      "measurement accuracy", 
      "reference system", 
      "time variation", 
      "lunar lander", 
      "link budget", 
      "terrestrial laser", 
      "long-term stability", 
      "orbit", 
      "same location", 
      "stations", 
      "shot", 
      "LLR", 
      "Earth", 
      "measurements", 
      "lander", 
      "realisation", 
      "constants", 
      "dynamics", 
      "contribution", 
      "magnitude", 
      "budget", 
      "potential", 
      "system", 
      "experiments", 
      "variation", 
      "transponders", 
      "location", 
      "quantity", 
      "principles", 
      "order", 
      "stability", 
      "frame", 
      "couldbe", 
      "accuracy", 
      "understanding", 
      "years", 
      "levels", 
      "strong ties", 
      "observations", 
      "benefits", 
      "most benefit", 
      "ties"
    ], 
    "name": "Contribution of Lunar Laser Ranging to Realise Geodetic Reference Systems", 
    "pagination": "55-59", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009163330"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-00860-3_8"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-00860-3_8", 
      "https://app.dimensions.ai/details/publication/pub.1009163330"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_242.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-00860-3_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00860-3_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00860-3_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00860-3_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00860-3_8'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      23 PREDICATES      83 URIs      76 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-00860-3_8 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author N60390b09b1964236bcef24b9445d63a9
4 schema:datePublished 2009-06-02
5 schema:datePublishedReg 2009-06-02
6 schema:description Lunar Laser Ranging (LLR) has provided observations for more than 36 years. There is enormous science potential of LLR to further our understanding of the dynamics of the Earth-Moon system (e.g.Earth orientation parameters (EOP) or the secular increase of the Earth-Moon distance: 3.8 cm/year) and to determine relativistic quantities such as the equivalence principle or any time variation of the gravitational constant. Here, we discuss the potential of LLR to contribute to the realisation of various reference systems, i.e. the terrestrial and selenocentric frame, but also thedynamic realisation of the celestial reference system, where most benefit is obtained from the long-term stability of the lunar orbit. Because of the tight link budget, only a handful terrestrial laser ranging stations are capable to routinely carry out the distance measurements (at cm level of precision). Therefore, we propose a next-generation lunar ranging experiment. Lunar landers shall deploy laser ’beacons’pointing at Earth.We estimate that the received pulse strength froma50 mJ Laser is 3 orders of magnitude larger than at classical LLR. Such laser shots could be received by most existing Satellite Laser Ranging (SLR) stations and measurement accuracies at mm level can then be accomplished. The contribution to the realisations of the aforementioned geodetic reference systems could be further improved.If in addition radio transponders were deployed at the same locations, a strong tie to the kinematic VLBI system couldbe established.
7 schema:editor Ned381ec6554240d49c321bc2cd8b47a1
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N1eff531319d34ab083fd6b501faac7ef
12 schema:keywords Celestial Reference System
13 Earth
14 Earth-Moon system
15 LLR
16 accuracy
17 benefits
18 budget
19 constants
20 contribution
21 couldbe
22 distance measurements
23 dynamics
24 equivalence principle
25 experiments
26 frame
27 geodetic reference system
28 gravitational constant
29 lander
30 laser
31 laser shots
32 levels
33 link budget
34 location
35 long-term stability
36 lunar lander
37 lunar laser
38 lunar orbit
39 mJ laser
40 magnitude
41 measurement accuracy
42 measurements
43 most benefit
44 observations
45 orbit
46 order
47 orders of magnitude
48 potential
49 principles
50 quantity
51 radio transponder
52 realisation
53 reference system
54 relativistic quantities
55 same location
56 satellite laser
57 science potential
58 shot
59 stability
60 stations
61 strong ties
62 system
63 terrestrial laser
64 ties
65 time variation
66 transponders
67 understanding
68 variation
69 years
70 schema:name Contribution of Lunar Laser Ranging to Realise Geodetic Reference Systems
71 schema:pagination 55-59
72 schema:productId Nd92d32b5751d45be9a3eebb7170c7290
73 Ndecb7c8530934d6f85e80f53ef270670
74 schema:publisher N133b744ec5ea47fc87a3c1808b3ceb16
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009163330
76 https://doi.org/10.1007/978-3-642-00860-3_8
77 schema:sdDatePublished 2022-05-20T07:44
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher Na8b6cf25fe5148bba8f3fa94d9cb1ab4
80 schema:url https://doi.org/10.1007/978-3-642-00860-3_8
81 sgo:license sg:explorer/license/
82 sgo:sdDataset chapters
83 rdf:type schema:Chapter
84 N030a991752d3436ea626791855a072a5 schema:familyName Drewes
85 schema:givenName Hermann
86 rdf:type schema:Person
87 N133b744ec5ea47fc87a3c1808b3ceb16 schema:name Springer Nature
88 rdf:type schema:Organisation
89 N1eff531319d34ab083fd6b501faac7ef schema:isbn 978-3-642-00859-7
90 978-3-642-00860-3
91 schema:name Geodetic Reference Frames
92 rdf:type schema:Book
93 N60390b09b1964236bcef24b9445d63a9 rdf:first sg:person.012520207735.29
94 rdf:rest N910a0406fc024856b353cef600169624
95 N910a0406fc024856b353cef600169624 rdf:first sg:person.014615210505.32
96 rdf:rest Nec6ee0fc9ec34e53937f10d87489045e
97 Na8b6cf25fe5148bba8f3fa94d9cb1ab4 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Na991d0715eb84ba680220e3b85d4db34 rdf:first sg:person.01203042610.59
100 rdf:rest rdf:nil
101 Nd92d32b5751d45be9a3eebb7170c7290 schema:name dimensions_id
102 schema:value pub.1009163330
103 rdf:type schema:PropertyValue
104 Ndecb7c8530934d6f85e80f53ef270670 schema:name doi
105 schema:value 10.1007/978-3-642-00860-3_8
106 rdf:type schema:PropertyValue
107 Nec6ee0fc9ec34e53937f10d87489045e rdf:first sg:person.0642304505.83
108 rdf:rest Na991d0715eb84ba680220e3b85d4db34
109 Ned381ec6554240d49c321bc2cd8b47a1 rdf:first N030a991752d3436ea626791855a072a5
110 rdf:rest rdf:nil
111 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
112 schema:name Engineering
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
115 schema:name Geomatic Engineering
116 rdf:type schema:DefinedTerm
117 sg:person.01203042610.59 schema:affiliation grid-institutes:None
118 schema:familyName Schreiber
119 schema:givenName Ulrich
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203042610.59
121 rdf:type schema:Person
122 sg:person.012520207735.29 schema:affiliation grid-institutes:grid.9122.8
123 schema:familyName Müller
124 schema:givenName Jürgen
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012520207735.29
126 rdf:type schema:Person
127 sg:person.014615210505.32 schema:affiliation grid-institutes:grid.9122.8
128 schema:familyName Biskupek
129 schema:givenName Liliane
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014615210505.32
131 rdf:type schema:Person
132 sg:person.0642304505.83 schema:affiliation grid-institutes:grid.7551.6
133 schema:familyName Oberst
134 schema:givenName Jürgen
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642304505.83
136 rdf:type schema:Person
137 grid-institutes:None schema:alternateName Forschungseinrichtung Satellitengeodäsie, Fundamentalstation Wettzell, 93444 Bad Kötzting, Germany
138 schema:name Forschungseinrichtung Satellitengeodäsie, Fundamentalstation Wettzell, 93444 Bad Kötzting, Germany
139 rdf:type schema:Organization
140 grid-institutes:grid.7551.6 schema:alternateName German Aerospace Center, Institute of Planetary Research, Berlin, Germany
141 schema:name German Aerospace Center, Institute of Planetary Research, Berlin, Germany
142 rdf:type schema:Organization
143 grid-institutes:grid.9122.8 schema:alternateName Institut für Erdmessung, Leibniz Universität Hannover, Schneiderberg 50, 30167 Hannover, Germany
144 schema:name Institut für Erdmessung, Leibniz Universität Hannover, Schneiderberg 50, 30167 Hannover, Germany
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...