Quantum Theory, the Chinese Room Argument and the Symbol Grounding Problem View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Ravi V. Gomatam

ABSTRACT

I offer an alternative to Searle’s original Chinese Room argument which I call the Sanskrit Room argument (SRA). SRA distinguishes between syntactic token and semantic symbol manipulations and shows that both are involved in human language understanding. Within classical mechanics, which gives an adequate scientific account of token manipulation, a symbol remains a subjective construct. I describe how an objective, quantitative theory of semantic symbols could be developed by applying the Schrodinger equation directly to macroscopic objects independent of Born’s rule and hence independent of current statistical quantum mechanics. Such a macroscopic quantum mechanics opens the possibility for developing a new theory of computing wherein the Universal Turing Machine (UTM) performs semantic symbol manipulation and models macroscopic quantum computing. More... »

PAGES

174-183

References to SciGraph publications

  • 2006-03. Quantum mechanics in the brain in NATURE
  • Book

    TITLE

    Quantum Interaction

    ISBN

    978-3-642-00833-7
    978-3-642-00834-4

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-642-00834-4_15

    DOI

    http://dx.doi.org/10.1007/978-3-642-00834-4_15

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031626558


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Bhaktivedanta Institute, 2334 Stuart Street, CA 94705, Berkeley, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gomatam", 
            "givenName": "Ravi V.", 
            "id": "sg:person.011256133563.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011256133563.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/440611a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005334198", 
              "https://doi.org/10.1038/440611a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/440611a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005334198", 
              "https://doi.org/10.1038/440611a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/440611a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005334198", 
              "https://doi.org/10.1038/440611a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0140525x00005756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016931045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0140525x00005756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016931045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0140525x00005756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016931045"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4324/9780203463680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019421340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.883004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058128396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/525618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058794820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/4323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098867526"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009", 
        "datePublishedReg": "2009-01-01", 
        "description": "I offer an alternative to Searle\u2019s original Chinese Room argument which I call the Sanskrit Room argument (SRA). SRA distinguishes between syntactic token and semantic symbol manipulations and shows that both are involved in human language understanding. Within classical mechanics, which gives an adequate scientific account of token manipulation, a symbol remains a subjective construct. I describe how an objective, quantitative theory of semantic symbols could be developed by applying the Schrodinger equation directly to macroscopic objects independent of Born\u2019s rule and hence independent of current statistical quantum mechanics. Such a macroscopic quantum mechanics opens the possibility for developing a new theory of computing wherein the Universal Turing Machine (UTM) performs semantic symbol manipulation and models macroscopic quantum computing.", 
        "editor": [
          {
            "familyName": "Bruza", 
            "givenName": "Peter", 
            "type": "Person"
          }, 
          {
            "familyName": "Sofge", 
            "givenName": "Donald", 
            "type": "Person"
          }, 
          {
            "familyName": "Lawless", 
            "givenName": "William", 
            "type": "Person"
          }, 
          {
            "familyName": "van Rijsbergen", 
            "givenName": "Keith", 
            "type": "Person"
          }, 
          {
            "familyName": "Klusch", 
            "givenName": "Matthias", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-642-00834-4_15", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-642-00833-7", 
            "978-3-642-00834-4"
          ], 
          "name": "Quantum Interaction", 
          "type": "Book"
        }, 
        "name": "Quantum Theory, the Chinese Room Argument and the Symbol Grounding Problem", 
        "pagination": "174-183", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031626558"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-642-00834-4_15"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "96a99059ea3955e61dc2bc6e689a30944e42a22806de5588adca20d9f45b3d07"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-642-00834-4_15", 
          "https://app.dimensions.ai/details/publication/pub.1031626558"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T07:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60342_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-642-00834-4_15"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00834-4_15'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00834-4_15'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00834-4_15'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00834-4_15'


     

    This table displays all metadata directly associated to this object as RDF triples.

    103 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-642-00834-4_15 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nb292103011614dec891ff700d762eefe
    4 schema:citation sg:pub.10.1038/440611a
    5 https://doi.org/10.1017/s0140525x00005756
    6 https://doi.org/10.1063/1.883004
    7 https://doi.org/10.1086/525618
    8 https://doi.org/10.1142/4323
    9 https://doi.org/10.4324/9780203463680
    10 schema:datePublished 2009
    11 schema:datePublishedReg 2009-01-01
    12 schema:description I offer an alternative to Searle’s original Chinese Room argument which I call the Sanskrit Room argument (SRA). SRA distinguishes between syntactic token and semantic symbol manipulations and shows that both are involved in human language understanding. Within classical mechanics, which gives an adequate scientific account of token manipulation, a symbol remains a subjective construct. I describe how an objective, quantitative theory of semantic symbols could be developed by applying the Schrodinger equation directly to macroscopic objects independent of Born’s rule and hence independent of current statistical quantum mechanics. Such a macroscopic quantum mechanics opens the possibility for developing a new theory of computing wherein the Universal Turing Machine (UTM) performs semantic symbol manipulation and models macroscopic quantum computing.
    13 schema:editor N833f4efcbe1b4af1ab4430578907d543
    14 schema:genre chapter
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N94c0a5ede4554468a50da2695df5b6c9
    18 schema:name Quantum Theory, the Chinese Room Argument and the Symbol Grounding Problem
    19 schema:pagination 174-183
    20 schema:productId N06d82f2a12db43a8ad7cd3e55d486b51
    21 N6be66d1ce62047d69197085325384aeb
    22 Nfd412bc8938b4c618a236e01402e23d4
    23 schema:publisher Ndb958b5857af4f8eb110968a417844ca
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031626558
    25 https://doi.org/10.1007/978-3-642-00834-4_15
    26 schema:sdDatePublished 2019-04-16T07:00
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher N6ffbcbf82b704fe4a5841296e7bdffe8
    29 schema:url https://link.springer.com/10.1007%2F978-3-642-00834-4_15
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset chapters
    32 rdf:type schema:Chapter
    33 N06d82f2a12db43a8ad7cd3e55d486b51 schema:name readcube_id
    34 schema:value 96a99059ea3955e61dc2bc6e689a30944e42a22806de5588adca20d9f45b3d07
    35 rdf:type schema:PropertyValue
    36 N07cb6eba699e4e0ba07be7f870cb4107 rdf:first N2d4cee1dd83b43b7bcb7919509c2a8e5
    37 rdf:rest N10e707017ddb445b96644492eb8960ec
    38 N10e707017ddb445b96644492eb8960ec rdf:first Ne214af039253480e88aa9f6c87d8c1f5
    39 rdf:rest N2dc724cc6ac34cd8a021eef43acc5084
    40 N2d4cee1dd83b43b7bcb7919509c2a8e5 schema:familyName Sofge
    41 schema:givenName Donald
    42 rdf:type schema:Person
    43 N2dc724cc6ac34cd8a021eef43acc5084 rdf:first N6c6bd76be4c94b359e58c405b654083c
    44 rdf:rest Nb982d03d05b04cde8f9403349cb8b0b0
    45 N61188ab2e0384201867176dc3f565e4d schema:name Bhaktivedanta Institute, 2334 Stuart Street, CA 94705, Berkeley, USA
    46 rdf:type schema:Organization
    47 N6be66d1ce62047d69197085325384aeb schema:name doi
    48 schema:value 10.1007/978-3-642-00834-4_15
    49 rdf:type schema:PropertyValue
    50 N6c6bd76be4c94b359e58c405b654083c schema:familyName van Rijsbergen
    51 schema:givenName Keith
    52 rdf:type schema:Person
    53 N6ffbcbf82b704fe4a5841296e7bdffe8 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 N833f4efcbe1b4af1ab4430578907d543 rdf:first Nc1033a3c2b314c31a2b2b4b7c22afb86
    56 rdf:rest N07cb6eba699e4e0ba07be7f870cb4107
    57 N94c0a5ede4554468a50da2695df5b6c9 schema:isbn 978-3-642-00833-7
    58 978-3-642-00834-4
    59 schema:name Quantum Interaction
    60 rdf:type schema:Book
    61 Nb292103011614dec891ff700d762eefe rdf:first sg:person.011256133563.33
    62 rdf:rest rdf:nil
    63 Nb982d03d05b04cde8f9403349cb8b0b0 rdf:first Nfc40ecbb3c6d4e6390dea45b45d1b9da
    64 rdf:rest rdf:nil
    65 Nc1033a3c2b314c31a2b2b4b7c22afb86 schema:familyName Bruza
    66 schema:givenName Peter
    67 rdf:type schema:Person
    68 Ndb958b5857af4f8eb110968a417844ca schema:location Berlin, Heidelberg
    69 schema:name Springer Berlin Heidelberg
    70 rdf:type schema:Organisation
    71 Ne214af039253480e88aa9f6c87d8c1f5 schema:familyName Lawless
    72 schema:givenName William
    73 rdf:type schema:Person
    74 Nfc40ecbb3c6d4e6390dea45b45d1b9da schema:familyName Klusch
    75 schema:givenName Matthias
    76 rdf:type schema:Person
    77 Nfd412bc8938b4c618a236e01402e23d4 schema:name dimensions_id
    78 schema:value pub.1031626558
    79 rdf:type schema:PropertyValue
    80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Mathematical Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Pure Mathematics
    85 rdf:type schema:DefinedTerm
    86 sg:person.011256133563.33 schema:affiliation N61188ab2e0384201867176dc3f565e4d
    87 schema:familyName Gomatam
    88 schema:givenName Ravi V.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011256133563.33
    90 rdf:type schema:Person
    91 sg:pub.10.1038/440611a schema:sameAs https://app.dimensions.ai/details/publication/pub.1005334198
    92 https://doi.org/10.1038/440611a
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1017/s0140525x00005756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016931045
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1063/1.883004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058128396
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1086/525618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058794820
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1142/4323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098867526
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.4324/9780203463680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019421340
    103 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...