Evolutionary New Centromeres in Primates View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009-04-06

AUTHORS

Mariano Rocchi , Roscoe Stanyon , Nicoletta Archidiacono

ABSTRACT

The centromere has a pivotal role in structuring chromosomal architecture, but remains a poorly understood and seemingly paradoxical “black hole.” Centromeres are a very rapidly evolving segment of the genome and it is now known that centromere shifts in evolution are not rare and must be considered on a par with other chromosome rearrangements. Recently, unprecedented findings on neocentromeres and evolutionary new centromeres (ENC) have helped clarify the relationship of the centromere within the genome and shown that these two phenomena are two faces of the same coin. No prominent sequence features are known that promote centromere formation and both types of new centromeres are formed epigenetically, both clinical neocentromeres and ENC cluster at chromosomal “hotspots.” The clustering of neocentromeres in 8p is probably the result of the relatively high frequency of noncanonical pairing. Studies on the evolution of the chromosomes 3, 13, and 15 help explain why there are clusters of neocentromeres. These domains often correspond to ancestral inactivated centromeres and some regions can preserve features that trigger neocentromere emergence over tens of millions of years. Neocentromeres may be correlated with the distribution of segmental duplications (SDs) in regions of extreme plasticity that often can be characterized as gene deserts. Further, because centromeres and associated pericentric regions are dynamically complex, centromere shifts may turbocharge genome reorganization by influencing the distribution of heterochromatin. The “reuse” of regions as centromere seeding-points in evolution and in human clinical cases further extends the concept of “reuse” of specific domains for “chromosomal events.” More... »

PAGES

103-152

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-642-00182-6_5

DOI

http://dx.doi.org/10.1007/978-3-642-00182-6_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000734837

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19521814


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Evolution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Centromere", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromosomes, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Duplication", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Primates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Telomere", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Genetica e Microbiologia, Via Amendola, 165/A, 70126, Bari, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Dipartimento di Genetica e Microbiologia, Via Amendola, 165/A, 70126, Bari, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rocchi", 
        "givenName": "Mariano", 
        "id": "sg:person.01021645746.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021645746.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Biologia Evoluzionistica, Via del Proconsolo, 12, 50122, Firenze, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Dipartimento di Biologia Evoluzionistica, Via del Proconsolo, 12, 50122, Firenze, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stanyon", 
        "givenName": "Roscoe", 
        "id": "sg:person.01171025130.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171025130.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Genetica e Microbiologia, Via Amendola, 165/A, 70126, Bari, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Dipartimento di Genetica e Microbiologia, Via Amendola, 165/A, 70126, Bari, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Archidiacono", 
        "givenName": "Nicoletta", 
        "id": "sg:person.056410501.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.056410501.58"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009-04-06", 
    "datePublishedReg": "2009-04-06", 
    "description": "The centromere has a pivotal role in structuring chromosomal architecture, but remains a poorly understood and seemingly paradoxical \u201cblack hole.\u201d Centromeres are a very rapidly evolving segment of the genome and it is now known that centromere shifts in evolution are not rare and must be considered on a par with other chromosome rearrangements. Recently, unprecedented findings on neocentromeres and evolutionary new centromeres (ENC) have helped clarify the relationship of the centromere within the genome and shown that these two phenomena are two faces of the same coin. No prominent sequence features are known that promote centromere formation and both types of new centromeres are formed epigenetically, both clinical neocentromeres and ENC cluster at chromosomal \u201chotspots.\u201d The clustering of neocentromeres in 8p is probably the result of the relatively high frequency of noncanonical pairing. Studies on the evolution of the chromosomes 3, 13, and 15 help explain why there are clusters of neocentromeres. These domains often correspond to ancestral inactivated centromeres and some regions can preserve features that trigger neocentromere emergence over tens of millions of years. Neocentromeres may be correlated with the distribution of segmental duplications (SDs) in regions of extreme plasticity that often can be characterized as gene deserts. Further, because centromeres and associated pericentric regions are dynamically complex, centromere shifts may turbocharge genome reorganization by influencing the distribution of heterochromatin. The \u201creuse\u201d of regions as centromere seeding-points in evolution and in human clinical cases further extends the concept of \u201creuse\u201d of specific domains for \u201cchromosomal events.\u201d", 
    "editor": [
      {
        "familyName": "Ugarkovic", 
        "givenName": "Durdica", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-642-00182-6_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-642-00181-9", 
        "978-3-642-00182-6"
      ], 
      "name": "Centromere", 
      "type": "Book"
    }, 
    "keywords": [
      "evolutionary new centromeres", 
      "new centromeres", 
      "centromere shifts", 
      "segmental duplications", 
      "distribution of heterochromatin", 
      "clinical neocentromeres", 
      "centromere formation", 
      "genome reorganization", 
      "chromosomal architecture", 
      "noncanonical pairing", 
      "pericentric regions", 
      "neocentromeres", 
      "centromeres", 
      "extreme plasticity", 
      "chromosome rearrangements", 
      "chromosomal events", 
      "chromosome 3", 
      "sequence features", 
      "unprecedented finding", 
      "genome", 
      "pivotal role", 
      "heterochromatin", 
      "evolution", 
      "genes", 
      "domain", 
      "duplication", 
      "region", 
      "specific domains", 
      "tens of millions", 
      "plasticity", 
      "hotspots", 
      "rearrangement", 
      "clusters", 
      "human clinical cases", 
      "reorganization", 
      "primates", 
      "pairing", 
      "same coin", 
      "role", 
      "high frequency", 
      "shift", 
      "distribution", 
      "formation", 
      "emergence", 
      "segments", 
      "events", 
      "clustering", 
      "millions", 
      "par", 
      "features", 
      "types", 
      "findings", 
      "relationship", 
      "study", 
      "architecture", 
      "results", 
      "tens", 
      "phenomenon", 
      "frequency", 
      "years", 
      "face", 
      "concept", 
      "help", 
      "cases", 
      "coins", 
      "clinical cases", 
      "reuse", 
      "holes", 
      "black holes"
    ], 
    "name": "Evolutionary New Centromeres in Primates", 
    "pagination": "103-152", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000734837"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-642-00182-6_5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19521814"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-642-00182-6_5", 
      "https://app.dimensions.ai/details/publication/pub.1000734837"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_119.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-642-00182-6_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00182-6_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00182-6_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00182-6_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-642-00182-6_5'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      23 PREDICATES      104 URIs      97 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-642-00182-6_5 schema:about N0cb091d22f6e40d587259fbc476c32a7
2 N42b355a18ea8491c941da1705fc1916b
3 N49e7e31981924ba5b033ebe048a6bd90
4 N710f9c37d24542ae8173ef94bf571fd8
5 N7bde4dd7809b4c02b19e932f8fb69075
6 Nc7d2f395cb154d7e87326d6d490a2514
7 Nc9d25f6ba2fa4ea098339c3156bbc9a5
8 Nd6ad4de64fa44ad096d07bb56e8055c3
9 Ndcb7fe9591464c21bf3372b9534084f1
10 anzsrc-for:06
11 anzsrc-for:0604
12 schema:author N6f0627bc33974b18a7cc125f18226f59
13 schema:datePublished 2009-04-06
14 schema:datePublishedReg 2009-04-06
15 schema:description The centromere has a pivotal role in structuring chromosomal architecture, but remains a poorly understood and seemingly paradoxical “black hole.” Centromeres are a very rapidly evolving segment of the genome and it is now known that centromere shifts in evolution are not rare and must be considered on a par with other chromosome rearrangements. Recently, unprecedented findings on neocentromeres and evolutionary new centromeres (ENC) have helped clarify the relationship of the centromere within the genome and shown that these two phenomena are two faces of the same coin. No prominent sequence features are known that promote centromere formation and both types of new centromeres are formed epigenetically, both clinical neocentromeres and ENC cluster at chromosomal “hotspots.” The clustering of neocentromeres in 8p is probably the result of the relatively high frequency of noncanonical pairing. Studies on the evolution of the chromosomes 3, 13, and 15 help explain why there are clusters of neocentromeres. These domains often correspond to ancestral inactivated centromeres and some regions can preserve features that trigger neocentromere emergence over tens of millions of years. Neocentromeres may be correlated with the distribution of segmental duplications (SDs) in regions of extreme plasticity that often can be characterized as gene deserts. Further, because centromeres and associated pericentric regions are dynamically complex, centromere shifts may turbocharge genome reorganization by influencing the distribution of heterochromatin. The “reuse” of regions as centromere seeding-points in evolution and in human clinical cases further extends the concept of “reuse” of specific domains for “chromosomal events.”
16 schema:editor Nac2473bdf0f74494acce30c39a6ee5a4
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N67352c1f15534463a5ce3a4e0786cc7c
21 schema:keywords architecture
22 black holes
23 cases
24 centromere formation
25 centromere shifts
26 centromeres
27 chromosomal architecture
28 chromosomal events
29 chromosome 3
30 chromosome rearrangements
31 clinical cases
32 clinical neocentromeres
33 clustering
34 clusters
35 coins
36 concept
37 distribution
38 distribution of heterochromatin
39 domain
40 duplication
41 emergence
42 events
43 evolution
44 evolutionary new centromeres
45 extreme plasticity
46 face
47 features
48 findings
49 formation
50 frequency
51 genes
52 genome
53 genome reorganization
54 help
55 heterochromatin
56 high frequency
57 holes
58 hotspots
59 human clinical cases
60 millions
61 neocentromeres
62 new centromeres
63 noncanonical pairing
64 pairing
65 par
66 pericentric regions
67 phenomenon
68 pivotal role
69 plasticity
70 primates
71 rearrangement
72 region
73 relationship
74 reorganization
75 results
76 reuse
77 role
78 same coin
79 segmental duplications
80 segments
81 sequence features
82 shift
83 specific domains
84 study
85 tens
86 tens of millions
87 types
88 unprecedented finding
89 years
90 schema:name Evolutionary New Centromeres in Primates
91 schema:pagination 103-152
92 schema:productId N0c5afab4321d4c18810cbc08693b647c
93 N365527b053414e6b97ff75835ac847a1
94 Nd264c40faac543f2a8f114bc5ce2e59d
95 schema:publisher Ne6623bfd936348ab9312382d81fde62e
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000734837
97 https://doi.org/10.1007/978-3-642-00182-6_5
98 schema:sdDatePublished 2022-05-20T07:41
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N078a9d821a9f49638efd4476222ba0ae
101 schema:url https://doi.org/10.1007/978-3-642-00182-6_5
102 sgo:license sg:explorer/license/
103 sgo:sdDataset chapters
104 rdf:type schema:Chapter
105 N078a9d821a9f49638efd4476222ba0ae schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N0c5afab4321d4c18810cbc08693b647c schema:name pubmed_id
108 schema:value 19521814
109 rdf:type schema:PropertyValue
110 N0cb091d22f6e40d587259fbc476c32a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Phylogeny
112 rdf:type schema:DefinedTerm
113 N308d353ac7e84582ad466e361f910563 rdf:first sg:person.01171025130.24
114 rdf:rest Na13a6428151c4ddda32ce8d342ca2b38
115 N365527b053414e6b97ff75835ac847a1 schema:name doi
116 schema:value 10.1007/978-3-642-00182-6_5
117 rdf:type schema:PropertyValue
118 N42b355a18ea8491c941da1705fc1916b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Biological Evolution
120 rdf:type schema:DefinedTerm
121 N49e7e31981924ba5b033ebe048a6bd90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Centromere
123 rdf:type schema:DefinedTerm
124 N6276ecd1f76b4e45bd7643e0edf9f1e3 schema:familyName Ugarkovic
125 schema:givenName Durdica
126 rdf:type schema:Person
127 N67352c1f15534463a5ce3a4e0786cc7c schema:isbn 978-3-642-00181-9
128 978-3-642-00182-6
129 schema:name Centromere
130 rdf:type schema:Book
131 N6f0627bc33974b18a7cc125f18226f59 rdf:first sg:person.01021645746.17
132 rdf:rest N308d353ac7e84582ad466e361f910563
133 N710f9c37d24542ae8173ef94bf571fd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Telomere
135 rdf:type schema:DefinedTerm
136 N7bde4dd7809b4c02b19e932f8fb69075 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Chromosomes, Human
138 rdf:type schema:DefinedTerm
139 Na13a6428151c4ddda32ce8d342ca2b38 rdf:first sg:person.056410501.58
140 rdf:rest rdf:nil
141 Nac2473bdf0f74494acce30c39a6ee5a4 rdf:first N6276ecd1f76b4e45bd7643e0edf9f1e3
142 rdf:rest rdf:nil
143 Nc7d2f395cb154d7e87326d6d490a2514 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Primates
145 rdf:type schema:DefinedTerm
146 Nc9d25f6ba2fa4ea098339c3156bbc9a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Humans
148 rdf:type schema:DefinedTerm
149 Nd264c40faac543f2a8f114bc5ce2e59d schema:name dimensions_id
150 schema:value pub.1000734837
151 rdf:type schema:PropertyValue
152 Nd6ad4de64fa44ad096d07bb56e8055c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Gene Duplication
154 rdf:type schema:DefinedTerm
155 Ndcb7fe9591464c21bf3372b9534084f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Animals
157 rdf:type schema:DefinedTerm
158 Ne6623bfd936348ab9312382d81fde62e schema:name Springer Nature
159 rdf:type schema:Organisation
160 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
161 schema:name Biological Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
164 schema:name Genetics
165 rdf:type schema:DefinedTerm
166 sg:person.01021645746.17 schema:affiliation grid-institutes:None
167 schema:familyName Rocchi
168 schema:givenName Mariano
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021645746.17
170 rdf:type schema:Person
171 sg:person.01171025130.24 schema:affiliation grid-institutes:None
172 schema:familyName Stanyon
173 schema:givenName Roscoe
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171025130.24
175 rdf:type schema:Person
176 sg:person.056410501.58 schema:affiliation grid-institutes:None
177 schema:familyName Archidiacono
178 schema:givenName Nicoletta
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.056410501.58
180 rdf:type schema:Person
181 grid-institutes:None schema:alternateName Dipartimento di Biologia Evoluzionistica, Via del Proconsolo, 12, 50122, Firenze, Italy
182 Dipartimento di Genetica e Microbiologia, Via Amendola, 165/A, 70126, Bari, Italy
183 schema:name Dipartimento di Biologia Evoluzionistica, Via del Proconsolo, 12, 50122, Firenze, Italy
184 Dipartimento di Genetica e Microbiologia, Via Amendola, 165/A, 70126, Bari, Italy
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...