Canonical Representation of Quasicyclic Codes Using Gröbner Bases Theory View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Kristine Lally

ABSTRACT

The tools and techniques of Gröbner bases theory have proved useful in characterising quasicyclic codes and analysing their algebraic structure. A canonical generating set can be obtained from the reduced Gröbner basis of an associated module structure. The very particular form of this generating set allows straightforward determination of properties such as dimension, in manner directly analogous to the theory developed for cyclic codes. More... »

PAGES

351-355

Book

TITLE

Gröbner Bases, Coding, and Cryptography

ISBN

978-3-540-93805-7
978-3-540-93806-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-93806-4_19

DOI

http://dx.doi.org/10.1007/978-3-540-93806-4_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020399961


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RMIT University", 
          "id": "https://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "Department of Mathematics, RMIT University, Melbourne, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lally", 
        "givenName": "Kristine", 
        "id": "sg:person.011611533267.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011611533267.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0166-218x(00)00350-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032026548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.79911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061101168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1978.1055929", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061648132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2004.831841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2008.928288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061652121"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "The tools and techniques of Gr\u00f6bner bases theory have proved useful in characterising quasicyclic codes and analysing their algebraic structure. A\u00a0canonical generating set can be obtained from the reduced Gr\u00f6bner basis of an associated module structure. The very particular form of this generating set allows straightforward determination of properties such as dimension, in manner directly analogous to the theory developed for cyclic codes.", 
    "editor": [
      {
        "familyName": "Sala", 
        "givenName": "Massimiliano", 
        "type": "Person"
      }, 
      {
        "familyName": "Sakata", 
        "givenName": "Shojiro", 
        "type": "Person"
      }, 
      {
        "familyName": "Mora", 
        "givenName": "Teo", 
        "type": "Person"
      }, 
      {
        "familyName": "Traverso", 
        "givenName": "Carlo", 
        "type": "Person"
      }, 
      {
        "familyName": "Perret", 
        "givenName": "Ludovic", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-93806-4_19", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-93805-7", 
        "978-3-540-93806-4"
      ], 
      "name": "Gr\u00f6bner Bases, Coding, and Cryptography", 
      "type": "Book"
    }, 
    "name": "Canonical Representation of Quasicyclic Codes Using Gr\u00f6bner Bases Theory", 
    "pagination": "351-355", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-93806-4_19"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "61333950e9de0cf69ff012f76648cdc9a8f3f3f4bd366b04e39b69e60eb203da"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020399961"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-93806-4_19", 
      "https://app.dimensions.ai/details/publication/pub.1020399961"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000255.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-540-93806-4_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-93806-4_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-93806-4_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-93806-4_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-93806-4_19'


 

This table displays all metadata directly associated to this object as RDF triples.

100 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-93806-4_19 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9e88927194cb4f2094509693826e2b46
4 schema:citation https://doi.org/10.1016/s0166-218x(00)00350-4
5 https://doi.org/10.1109/18.79911
6 https://doi.org/10.1109/tit.1978.1055929
7 https://doi.org/10.1109/tit.2004.831841
8 https://doi.org/10.1109/tit.2008.928288
9 schema:datePublished 2009
10 schema:datePublishedReg 2009-01-01
11 schema:description The tools and techniques of Gröbner bases theory have proved useful in characterising quasicyclic codes and analysing their algebraic structure. A canonical generating set can be obtained from the reduced Gröbner basis of an associated module structure. The very particular form of this generating set allows straightforward determination of properties such as dimension, in manner directly analogous to the theory developed for cyclic codes.
12 schema:editor Nb19f779f32994033b7e99c57a899e075
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Nc36ad1a4567d4ce5aef2eb67ec958cfb
17 schema:name Canonical Representation of Quasicyclic Codes Using Gröbner Bases Theory
18 schema:pagination 351-355
19 schema:productId N24226da6203643abaa0df8864857c479
20 N311e13dc598242aabb5187d1fe887587
21 Nbb09c7f3534c4ffd927dac178e385928
22 schema:publisher N5a7a838e97b64549b081c20005a0aba9
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020399961
24 https://doi.org/10.1007/978-3-540-93806-4_19
25 schema:sdDatePublished 2019-04-15T14:24
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nabae1d73d3dd425d93490ee1130a512e
28 schema:url http://link.springer.com/10.1007/978-3-540-93806-4_19
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N08d6e16503a94083bef561aa1ffe3f1e schema:familyName Sala
33 schema:givenName Massimiliano
34 rdf:type schema:Person
35 N24226da6203643abaa0df8864857c479 schema:name doi
36 schema:value 10.1007/978-3-540-93806-4_19
37 rdf:type schema:PropertyValue
38 N311e13dc598242aabb5187d1fe887587 schema:name dimensions_id
39 schema:value pub.1020399961
40 rdf:type schema:PropertyValue
41 N5a7a838e97b64549b081c20005a0aba9 schema:location Berlin, Heidelberg
42 schema:name Springer Berlin Heidelberg
43 rdf:type schema:Organisation
44 N7a19fabe8b6f4a5fb79dc5f61371e88d schema:familyName Sakata
45 schema:givenName Shojiro
46 rdf:type schema:Person
47 N7b6c795965664519b95136d1f3a1d74d rdf:first N8f2054aa66da480a8c0347ec9b036c6e
48 rdf:rest Nbda55b55fc2a4d268cee0e92d3f79303
49 N7e412d13c19942bf9e1c793443c8d3b1 rdf:first Nf318072f91df48ed8d1ea91ef33bcf29
50 rdf:rest N7b6c795965664519b95136d1f3a1d74d
51 N8f2054aa66da480a8c0347ec9b036c6e schema:familyName Traverso
52 schema:givenName Carlo
53 rdf:type schema:Person
54 N9e88927194cb4f2094509693826e2b46 rdf:first sg:person.011611533267.48
55 rdf:rest rdf:nil
56 Na58a91a02a4a459ea35f3c715daff917 rdf:first N7a19fabe8b6f4a5fb79dc5f61371e88d
57 rdf:rest N7e412d13c19942bf9e1c793443c8d3b1
58 Nabae1d73d3dd425d93490ee1130a512e schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nb19f779f32994033b7e99c57a899e075 rdf:first N08d6e16503a94083bef561aa1ffe3f1e
61 rdf:rest Na58a91a02a4a459ea35f3c715daff917
62 Nbb09c7f3534c4ffd927dac178e385928 schema:name readcube_id
63 schema:value 61333950e9de0cf69ff012f76648cdc9a8f3f3f4bd366b04e39b69e60eb203da
64 rdf:type schema:PropertyValue
65 Nbd480301cb74476f9bb1de7c9d535b23 schema:familyName Perret
66 schema:givenName Ludovic
67 rdf:type schema:Person
68 Nbda55b55fc2a4d268cee0e92d3f79303 rdf:first Nbd480301cb74476f9bb1de7c9d535b23
69 rdf:rest rdf:nil
70 Nc36ad1a4567d4ce5aef2eb67ec958cfb schema:isbn 978-3-540-93805-7
71 978-3-540-93806-4
72 schema:name Gröbner Bases, Coding, and Cryptography
73 rdf:type schema:Book
74 Nf318072f91df48ed8d1ea91ef33bcf29 schema:familyName Mora
75 schema:givenName Teo
76 rdf:type schema:Person
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
81 schema:name Pure Mathematics
82 rdf:type schema:DefinedTerm
83 sg:person.011611533267.48 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
84 schema:familyName Lally
85 schema:givenName Kristine
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011611533267.48
87 rdf:type schema:Person
88 https://doi.org/10.1016/s0166-218x(00)00350-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032026548
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1109/18.79911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061101168
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1109/tit.1978.1055929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061648132
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1109/tit.2004.831841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061650173
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1109/tit.2008.928288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061652121
97 rdf:type schema:CreativeWork
98 https://www.grid.ac/institutes/grid.1017.7 schema:alternateName RMIT University
99 schema:name Department of Mathematics, RMIT University, Melbourne, Australia
100 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...