Ontology type: schema:Chapter Open Access: True
2009-05-22
AUTHORS ABSTRACTWe overview the algorithms for reasoning with description logic (DL) ontologies based on resolution. These algorithms often have worst-case optimal complexity, and, by relying on vast experience in building resolution theorem provers, they can be implemented efficiently. Furthermore, we present a resolution-based algorithm that reduces a DL knowledge base into a disjunctive datalog program, while preserving the set of entailed facts. This reduction enables the application of optimization techniques from deductive databases, such as magic sets, to reasoning in DLs. This approach has proven itself in practice on ontologies with relatively small and simple TBoxes, but large ABoxes. More... »
PAGES529-550
Handbook on Ontologies
ISBN
978-3-540-70999-2
978-3-540-92673-3
http://scigraph.springernature.com/pub.10.1007/978-3-540-92673-3_24
DOIhttp://dx.doi.org/10.1007/978-3-540-92673-3_24
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1008875726
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "School of Computer Science, University of Manchester, Manchester, UK",
"id": "http://www.grid.ac/institutes/grid.5379.8",
"name": [
"School of Computer Science, University of Manchester, Manchester, UK"
],
"type": "Organization"
},
"familyName": "Motik",
"givenName": "Boris",
"id": "sg:person.07401076267.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07401076267.36"
],
"type": "Person"
}
],
"datePublished": "2009-05-22",
"datePublishedReg": "2009-05-22",
"description": "We overview the algorithms for reasoning with description logic (DL) ontologies based on resolution. These algorithms often have worst-case optimal complexity, and, by relying on vast experience in building resolution theorem provers, they can be implemented efficiently. Furthermore, we present a resolution-based algorithm that reduces a DL knowledge base into a disjunctive datalog program, while preserving the set of entailed facts. This reduction enables the application of optimization techniques from deductive databases, such as magic sets, to reasoning in DLs. This approach has proven itself in practice on ontologies with relatively small and simple TBoxes, but large ABoxes.",
"editor": [
{
"familyName": "Staab",
"givenName": "Steffen",
"type": "Person"
},
{
"familyName": "Studer",
"givenName": "Rudi",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-540-92673-3_24",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-540-70999-2",
"978-3-540-92673-3"
],
"name": "Handbook on Ontologies",
"type": "Book"
},
"keywords": [
"DL knowledge base",
"description logic ontologies",
"resolution-based reasoning",
"resolution-based algorithms",
"resolution theorem provers",
"disjunctive datalog programs",
"large ABoxes",
"deductive databases",
"theorem provers",
"Datalog programs",
"knowledge base",
"ontology",
"magic sets",
"optimization techniques",
"algorithm",
"optimal complexity",
"provers",
"ABox",
"set",
"TBox",
"reasoning",
"complexity",
"database",
"applications",
"vast experience",
"technique",
"base",
"program",
"experience",
"fact",
"resolution",
"practice",
"reduction",
"dl",
"approach"
],
"name": "Resolution-Based Reasoning for Ontologies",
"pagination": "529-550",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1008875726"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-540-92673-3_24"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-540-92673-3_24",
"https://app.dimensions.ai/details/publication/pub.1008875726"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:45",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_28.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-540-92673-3_24"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-92673-3_24'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-92673-3_24'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-92673-3_24'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-92673-3_24'
This table displays all metadata directly associated to this object as RDF triples.
104 TRIPLES
23 PREDICATES
61 URIs
53 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-540-92673-3_24 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | ″ | anzsrc-for:0802 |
4 | ″ | schema:author | N39050aaa9c094d26a7d10a20b5045d54 |
5 | ″ | schema:datePublished | 2009-05-22 |
6 | ″ | schema:datePublishedReg | 2009-05-22 |
7 | ″ | schema:description | We overview the algorithms for reasoning with description logic (DL) ontologies based on resolution. These algorithms often have worst-case optimal complexity, and, by relying on vast experience in building resolution theorem provers, they can be implemented efficiently. Furthermore, we present a resolution-based algorithm that reduces a DL knowledge base into a disjunctive datalog program, while preserving the set of entailed facts. This reduction enables the application of optimization techniques from deductive databases, such as magic sets, to reasoning in DLs. This approach has proven itself in practice on ontologies with relatively small and simple TBoxes, but large ABoxes. |
8 | ″ | schema:editor | N426bd5e1906744098b5e0c324cc51c8e |
9 | ″ | schema:genre | chapter |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | true |
12 | ″ | schema:isPartOf | Nc9c11b97014e442796ee5fc488e473b2 |
13 | ″ | schema:keywords | ABox |
14 | ″ | ″ | DL knowledge base |
15 | ″ | ″ | Datalog programs |
16 | ″ | ″ | TBox |
17 | ″ | ″ | algorithm |
18 | ″ | ″ | applications |
19 | ″ | ″ | approach |
20 | ″ | ″ | base |
21 | ″ | ″ | complexity |
22 | ″ | ″ | database |
23 | ″ | ″ | deductive databases |
24 | ″ | ″ | description logic ontologies |
25 | ″ | ″ | disjunctive datalog programs |
26 | ″ | ″ | dl |
27 | ″ | ″ | experience |
28 | ″ | ″ | fact |
29 | ″ | ″ | knowledge base |
30 | ″ | ″ | large ABoxes |
31 | ″ | ″ | magic sets |
32 | ″ | ″ | ontology |
33 | ″ | ″ | optimal complexity |
34 | ″ | ″ | optimization techniques |
35 | ″ | ″ | practice |
36 | ″ | ″ | program |
37 | ″ | ″ | provers |
38 | ″ | ″ | reasoning |
39 | ″ | ″ | reduction |
40 | ″ | ″ | resolution |
41 | ″ | ″ | resolution theorem provers |
42 | ″ | ″ | resolution-based algorithms |
43 | ″ | ″ | resolution-based reasoning |
44 | ″ | ″ | set |
45 | ″ | ″ | technique |
46 | ″ | ″ | theorem provers |
47 | ″ | ″ | vast experience |
48 | ″ | schema:name | Resolution-Based Reasoning for Ontologies |
49 | ″ | schema:pagination | 529-550 |
50 | ″ | schema:productId | N46d9bed2ef9a4844ac14602941b5b900 |
51 | ″ | ″ | N93d835c1575746adbc4ee82ae819c522 |
52 | ″ | schema:publisher | Nac2858df79784b85b42ae1ca6d64a1f8 |
53 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1008875726 |
54 | ″ | ″ | https://doi.org/10.1007/978-3-540-92673-3_24 |
55 | ″ | schema:sdDatePublished | 2022-05-20T07:45 |
56 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
57 | ″ | schema:sdPublisher | Na293a2e25bc44d30a1be81979fb49411 |
58 | ″ | schema:url | https://doi.org/10.1007/978-3-540-92673-3_24 |
59 | ″ | sgo:license | sg:explorer/license/ |
60 | ″ | sgo:sdDataset | chapters |
61 | ″ | rdf:type | schema:Chapter |
62 | N39050aaa9c094d26a7d10a20b5045d54 | rdf:first | sg:person.07401076267.36 |
63 | ″ | rdf:rest | rdf:nil |
64 | N426bd5e1906744098b5e0c324cc51c8e | rdf:first | N8fcfc88f1e034b7b953654018968c5f3 |
65 | ″ | rdf:rest | Nf375d04c360a43ddbb3875d88536b242 |
66 | N46d9bed2ef9a4844ac14602941b5b900 | schema:name | dimensions_id |
67 | ″ | schema:value | pub.1008875726 |
68 | ″ | rdf:type | schema:PropertyValue |
69 | N6945c36664c8494484c136dda7143283 | schema:familyName | Studer |
70 | ″ | schema:givenName | Rudi |
71 | ″ | rdf:type | schema:Person |
72 | N8fcfc88f1e034b7b953654018968c5f3 | schema:familyName | Staab |
73 | ″ | schema:givenName | Steffen |
74 | ″ | rdf:type | schema:Person |
75 | N93d835c1575746adbc4ee82ae819c522 | schema:name | doi |
76 | ″ | schema:value | 10.1007/978-3-540-92673-3_24 |
77 | ″ | rdf:type | schema:PropertyValue |
78 | Na293a2e25bc44d30a1be81979fb49411 | schema:name | Springer Nature - SN SciGraph project |
79 | ″ | rdf:type | schema:Organization |
80 | Nac2858df79784b85b42ae1ca6d64a1f8 | schema:name | Springer Nature |
81 | ″ | rdf:type | schema:Organisation |
82 | Nc9c11b97014e442796ee5fc488e473b2 | schema:isbn | 978-3-540-70999-2 |
83 | ″ | ″ | 978-3-540-92673-3 |
84 | ″ | schema:name | Handbook on Ontologies |
85 | ″ | rdf:type | schema:Book |
86 | Nf375d04c360a43ddbb3875d88536b242 | rdf:first | N6945c36664c8494484c136dda7143283 |
87 | ″ | rdf:rest | rdf:nil |
88 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
89 | ″ | schema:name | Information and Computing Sciences |
90 | ″ | rdf:type | schema:DefinedTerm |
91 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
92 | ″ | schema:name | Artificial Intelligence and Image Processing |
93 | ″ | rdf:type | schema:DefinedTerm |
94 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Computation Theory and Mathematics |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | sg:person.07401076267.36 | schema:affiliation | grid-institutes:grid.5379.8 |
98 | ″ | schema:familyName | Motik |
99 | ″ | schema:givenName | Boris |
100 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07401076267.36 |
101 | ″ | rdf:type | schema:Person |
102 | grid-institutes:grid.5379.8 | schema:alternateName | School of Computer Science, University of Manchester, Manchester, UK |
103 | ″ | schema:name | School of Computer Science, University of Manchester, Manchester, UK |
104 | ″ | rdf:type | schema:Organization |