Resolution-Based Reasoning for Ontologies View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009-05-22

AUTHORS

Boris Motik

ABSTRACT

We overview the algorithms for reasoning with description logic (DL) ontologies based on resolution. These algorithms often have worst-case optimal complexity, and, by relying on vast experience in building resolution theorem provers, they can be implemented efficiently. Furthermore, we present a resolution-based algorithm that reduces a DL knowledge base into a disjunctive datalog program, while preserving the set of entailed facts. This reduction enables the application of optimization techniques from deductive databases, such as magic sets, to reasoning in DLs. This approach has proven itself in practice on ontologies with relatively small and simple TBoxes, but large ABoxes. More... »

PAGES

529-550

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-92673-3_24

DOI

http://dx.doi.org/10.1007/978-3-540-92673-3_24

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008875726


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Computer Science, University of Manchester, Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Computer Science, University of Manchester, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Motik", 
        "givenName": "Boris", 
        "id": "sg:person.07401076267.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07401076267.36"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009-05-22", 
    "datePublishedReg": "2009-05-22", 
    "description": "We overview the algorithms for reasoning with description logic (DL) ontologies based on resolution. These algorithms often have worst-case optimal complexity, and, by relying on vast experience in building resolution theorem provers, they can be implemented efficiently. Furthermore, we present a resolution-based algorithm that reduces a DL knowledge base into a disjunctive datalog program, while preserving the set of entailed facts. This reduction enables the application of optimization techniques from deductive databases, such as magic sets, to reasoning in DLs. This approach has proven itself in practice on ontologies with relatively small and simple TBoxes, but large ABoxes.", 
    "editor": [
      {
        "familyName": "Staab", 
        "givenName": "Steffen", 
        "type": "Person"
      }, 
      {
        "familyName": "Studer", 
        "givenName": "Rudi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-92673-3_24", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-70999-2", 
        "978-3-540-92673-3"
      ], 
      "name": "Handbook on Ontologies", 
      "type": "Book"
    }, 
    "keywords": [
      "DL knowledge base", 
      "description logic ontologies", 
      "resolution-based reasoning", 
      "resolution-based algorithms", 
      "resolution theorem provers", 
      "disjunctive datalog programs", 
      "large ABoxes", 
      "deductive databases", 
      "theorem provers", 
      "Datalog programs", 
      "knowledge base", 
      "ontology", 
      "magic sets", 
      "optimization techniques", 
      "algorithm", 
      "optimal complexity", 
      "provers", 
      "ABox", 
      "set", 
      "TBox", 
      "reasoning", 
      "complexity", 
      "database", 
      "applications", 
      "vast experience", 
      "technique", 
      "base", 
      "program", 
      "experience", 
      "fact", 
      "resolution", 
      "practice", 
      "reduction", 
      "dl", 
      "approach"
    ], 
    "name": "Resolution-Based Reasoning for Ontologies", 
    "pagination": "529-550", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008875726"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-92673-3_24"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-92673-3_24", 
      "https://app.dimensions.ai/details/publication/pub.1008875726"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_28.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-92673-3_24"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-92673-3_24'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-92673-3_24'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-92673-3_24'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-92673-3_24'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      23 PREDICATES      61 URIs      53 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-92673-3_24 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0802
4 schema:author N39050aaa9c094d26a7d10a20b5045d54
5 schema:datePublished 2009-05-22
6 schema:datePublishedReg 2009-05-22
7 schema:description We overview the algorithms for reasoning with description logic (DL) ontologies based on resolution. These algorithms often have worst-case optimal complexity, and, by relying on vast experience in building resolution theorem provers, they can be implemented efficiently. Furthermore, we present a resolution-based algorithm that reduces a DL knowledge base into a disjunctive datalog program, while preserving the set of entailed facts. This reduction enables the application of optimization techniques from deductive databases, such as magic sets, to reasoning in DLs. This approach has proven itself in practice on ontologies with relatively small and simple TBoxes, but large ABoxes.
8 schema:editor N426bd5e1906744098b5e0c324cc51c8e
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf Nc9c11b97014e442796ee5fc488e473b2
13 schema:keywords ABox
14 DL knowledge base
15 Datalog programs
16 TBox
17 algorithm
18 applications
19 approach
20 base
21 complexity
22 database
23 deductive databases
24 description logic ontologies
25 disjunctive datalog programs
26 dl
27 experience
28 fact
29 knowledge base
30 large ABoxes
31 magic sets
32 ontology
33 optimal complexity
34 optimization techniques
35 practice
36 program
37 provers
38 reasoning
39 reduction
40 resolution
41 resolution theorem provers
42 resolution-based algorithms
43 resolution-based reasoning
44 set
45 technique
46 theorem provers
47 vast experience
48 schema:name Resolution-Based Reasoning for Ontologies
49 schema:pagination 529-550
50 schema:productId N46d9bed2ef9a4844ac14602941b5b900
51 N93d835c1575746adbc4ee82ae819c522
52 schema:publisher Nac2858df79784b85b42ae1ca6d64a1f8
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008875726
54 https://doi.org/10.1007/978-3-540-92673-3_24
55 schema:sdDatePublished 2022-05-20T07:45
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Na293a2e25bc44d30a1be81979fb49411
58 schema:url https://doi.org/10.1007/978-3-540-92673-3_24
59 sgo:license sg:explorer/license/
60 sgo:sdDataset chapters
61 rdf:type schema:Chapter
62 N39050aaa9c094d26a7d10a20b5045d54 rdf:first sg:person.07401076267.36
63 rdf:rest rdf:nil
64 N426bd5e1906744098b5e0c324cc51c8e rdf:first N8fcfc88f1e034b7b953654018968c5f3
65 rdf:rest Nf375d04c360a43ddbb3875d88536b242
66 N46d9bed2ef9a4844ac14602941b5b900 schema:name dimensions_id
67 schema:value pub.1008875726
68 rdf:type schema:PropertyValue
69 N6945c36664c8494484c136dda7143283 schema:familyName Studer
70 schema:givenName Rudi
71 rdf:type schema:Person
72 N8fcfc88f1e034b7b953654018968c5f3 schema:familyName Staab
73 schema:givenName Steffen
74 rdf:type schema:Person
75 N93d835c1575746adbc4ee82ae819c522 schema:name doi
76 schema:value 10.1007/978-3-540-92673-3_24
77 rdf:type schema:PropertyValue
78 Na293a2e25bc44d30a1be81979fb49411 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nac2858df79784b85b42ae1ca6d64a1f8 schema:name Springer Nature
81 rdf:type schema:Organisation
82 Nc9c11b97014e442796ee5fc488e473b2 schema:isbn 978-3-540-70999-2
83 978-3-540-92673-3
84 schema:name Handbook on Ontologies
85 rdf:type schema:Book
86 Nf375d04c360a43ddbb3875d88536b242 rdf:first N6945c36664c8494484c136dda7143283
87 rdf:rest rdf:nil
88 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
89 schema:name Information and Computing Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
92 schema:name Artificial Intelligence and Image Processing
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
95 schema:name Computation Theory and Mathematics
96 rdf:type schema:DefinedTerm
97 sg:person.07401076267.36 schema:affiliation grid-institutes:grid.5379.8
98 schema:familyName Motik
99 schema:givenName Boris
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07401076267.36
101 rdf:type schema:Person
102 grid-institutes:grid.5379.8 schema:alternateName School of Computer Science, University of Manchester, Manchester, UK
103 schema:name School of Computer Science, University of Manchester, Manchester, UK
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...