Resolution-Based Reasoning for Ontologies View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009-05-22

AUTHORS

Boris Motik

ABSTRACT

We overview the algorithms for reasoning with description logic (DL) ontologies based on resolution. These algorithms often have worst-case optimal complexity, and, by relying on vast experience in building resolution theorem provers, they can be implemented efficiently. Furthermore, we present a resolution-based algorithm that reduces a DL knowledge base into a disjunctive datalog program, while preserving the set of entailed facts. This reduction enables the application of optimization techniques from deductive databases, such as magic sets, to reasoning in DLs. This approach has proven itself in practice on ontologies with relatively small and simple TBoxes, but large ABoxes. More... »

PAGES

529-550

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-92673-3_24

DOI

http://dx.doi.org/10.1007/978-3-540-92673-3_24

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008875726


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Computer Science, University of Manchester, Manchester, UK", 
          "id": "http://www.grid.ac/institutes/grid.5379.8", 
          "name": [
            "School of Computer Science, University of Manchester, Manchester, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Motik", 
        "givenName": "Boris", 
        "id": "sg:person.07401076267.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07401076267.36"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2009-05-22", 
    "datePublishedReg": "2009-05-22", 
    "description": "We overview the algorithms for reasoning with description logic (DL) ontologies based on resolution. These algorithms often have worst-case optimal complexity, and, by relying on vast experience in building resolution theorem provers, they can be implemented efficiently. Furthermore, we present a resolution-based algorithm that reduces a DL knowledge base into a disjunctive datalog program, while preserving the set of entailed facts. This reduction enables the application of optimization techniques from deductive databases, such as magic sets, to reasoning in DLs. This approach has proven itself in practice on ontologies with relatively small and simple TBoxes, but large ABoxes.", 
    "editor": [
      {
        "familyName": "Staab", 
        "givenName": "Steffen", 
        "type": "Person"
      }, 
      {
        "familyName": "Studer", 
        "givenName": "Rudi", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-92673-3_24", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-70999-2", 
        "978-3-540-92673-3"
      ], 
      "name": "Handbook on Ontologies", 
      "type": "Book"
    }, 
    "keywords": [
      "resolution-based algorithms", 
      "DL knowledge base", 
      "resolution-based reasoning", 
      "resolution theorem provers", 
      "description logic ontologies", 
      "disjunctive datalog programs", 
      "deductive databases", 
      "large ABoxes", 
      "theorem provers", 
      "Datalog programs", 
      "knowledge base", 
      "magic sets", 
      "ontology", 
      "optimization techniques", 
      "algorithm", 
      "optimal complexity", 
      "provers", 
      "ABox", 
      "set", 
      "TBox", 
      "reasoning", 
      "complexity", 
      "database", 
      "applications", 
      "technique", 
      "vast experience", 
      "base", 
      "program", 
      "experience", 
      "resolution", 
      "fact", 
      "practice", 
      "reduction", 
      "dl", 
      "approach", 
      "logic (DL) ontologies", 
      "worst-case optimal complexity", 
      "entailed facts", 
      "simple TBoxes"
    ], 
    "name": "Resolution-Based Reasoning for Ontologies", 
    "pagination": "529-550", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008875726"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-92673-3_24"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-92673-3_24", 
      "https://app.dimensions.ai/details/publication/pub.1008875726"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_214.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-92673-3_24"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-92673-3_24'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-92673-3_24'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-92673-3_24'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-92673-3_24'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      23 PREDICATES      65 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-92673-3_24 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0802
4 schema:author N6417edc9dc9d4bdcb45f9cdf4ff3545b
5 schema:datePublished 2009-05-22
6 schema:datePublishedReg 2009-05-22
7 schema:description We overview the algorithms for reasoning with description logic (DL) ontologies based on resolution. These algorithms often have worst-case optimal complexity, and, by relying on vast experience in building resolution theorem provers, they can be implemented efficiently. Furthermore, we present a resolution-based algorithm that reduces a DL knowledge base into a disjunctive datalog program, while preserving the set of entailed facts. This reduction enables the application of optimization techniques from deductive databases, such as magic sets, to reasoning in DLs. This approach has proven itself in practice on ontologies with relatively small and simple TBoxes, but large ABoxes.
8 schema:editor Na57b6bda755449fb80be4163180f99a2
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N696a200efe724099a4217fed471fb720
13 schema:keywords ABox
14 DL knowledge base
15 Datalog programs
16 TBox
17 algorithm
18 applications
19 approach
20 base
21 complexity
22 database
23 deductive databases
24 description logic ontologies
25 disjunctive datalog programs
26 dl
27 entailed facts
28 experience
29 fact
30 knowledge base
31 large ABoxes
32 logic (DL) ontologies
33 magic sets
34 ontology
35 optimal complexity
36 optimization techniques
37 practice
38 program
39 provers
40 reasoning
41 reduction
42 resolution
43 resolution theorem provers
44 resolution-based algorithms
45 resolution-based reasoning
46 set
47 simple TBoxes
48 technique
49 theorem provers
50 vast experience
51 worst-case optimal complexity
52 schema:name Resolution-Based Reasoning for Ontologies
53 schema:pagination 529-550
54 schema:productId N344fe957cc394e26aa551007b711893d
55 N50dd0a6d01f9427184a9fe3ea175f494
56 schema:publisher N06813c4f6a264b4a97b1ebbad7f5a919
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008875726
58 https://doi.org/10.1007/978-3-540-92673-3_24
59 schema:sdDatePublished 2022-01-01T19:12
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nc51e8f5dfe4041ac9759bf75e38366e4
62 schema:url https://doi.org/10.1007/978-3-540-92673-3_24
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N06813c4f6a264b4a97b1ebbad7f5a919 schema:name Springer Nature
67 rdf:type schema:Organisation
68 N344fe957cc394e26aa551007b711893d schema:name dimensions_id
69 schema:value pub.1008875726
70 rdf:type schema:PropertyValue
71 N50dd0a6d01f9427184a9fe3ea175f494 schema:name doi
72 schema:value 10.1007/978-3-540-92673-3_24
73 rdf:type schema:PropertyValue
74 N6417edc9dc9d4bdcb45f9cdf4ff3545b rdf:first sg:person.07401076267.36
75 rdf:rest rdf:nil
76 N696a200efe724099a4217fed471fb720 schema:isbn 978-3-540-70999-2
77 978-3-540-92673-3
78 schema:name Handbook on Ontologies
79 rdf:type schema:Book
80 Na57b6bda755449fb80be4163180f99a2 rdf:first Nee762dee26d14dc1935407223bb8df07
81 rdf:rest Nfc81aa99014b43e1adc423ec565b6dda
82 Nc51e8f5dfe4041ac9759bf75e38366e4 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Nee762dee26d14dc1935407223bb8df07 schema:familyName Staab
85 schema:givenName Steffen
86 rdf:type schema:Person
87 Nf90ee4106d9a434bb4a2bb9e6cd36c6e schema:familyName Studer
88 schema:givenName Rudi
89 rdf:type schema:Person
90 Nfc81aa99014b43e1adc423ec565b6dda rdf:first Nf90ee4106d9a434bb4a2bb9e6cd36c6e
91 rdf:rest rdf:nil
92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information and Computing Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
96 schema:name Artificial Intelligence and Image Processing
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
99 schema:name Computation Theory and Mathematics
100 rdf:type schema:DefinedTerm
101 sg:person.07401076267.36 schema:affiliation grid-institutes:grid.5379.8
102 schema:familyName Motik
103 schema:givenName Boris
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07401076267.36
105 rdf:type schema:Person
106 grid-institutes:grid.5379.8 schema:alternateName School of Computer Science, University of Manchester, Manchester, UK
107 schema:name School of Computer Science, University of Manchester, Manchester, UK
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...