A Semi-Autonomic Framework for Intrusion Tolerance in Heterogeneous Networks View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Salvatore D’Antonio , Simon Pietro Romano , Steven Simpson , Paul Smith , David Hutchison

ABSTRACT

A suitable strategy for network intrusion tolerance— detecting intrusions and remedying them—depends on aspects of the domain being protected, such as the kinds of intrusion faced, the resources available for monitoring and remediation, and the level at which automated remediation can be carried out. The decision to remediate autonomically will have to consider the relative costs of performing a potentially disruptive remedy in the wrong circumstances and leaving it up to a slow, but more accurate, human operator. Autonomic remediation also needs to be withdrawn at some point – a phase of recovery to the normal network state.In this paper, we present a framework for deploying domain-adaptable intrusion-tolerance strategies in heterogeneous networks. Functionality is divided into that which is fixed by the domain and that which should adapt, in order to cope with heterogeneity. The interactions between detection and remediation are considered in order to make a stable recovery decision. We also present a model for combining diverse sources of monitoring to improve accurate decision making, an important pre-requisite to automated remediation. More... »

PAGES

230-241

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-92157-8_20

DOI

http://dx.doi.org/10.1007/978-3-540-92157-8_20

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017734903


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "CINI \u2013 ITeM Laboratory, Via Cinthia, 80126, Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "CINI \u2013 ITeM Laboratory, Via Cinthia, 80126, Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u2019Antonio", 
        "givenName": "Salvatore", 
        "id": "sg:person.010310265423.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010310265423.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Napoli \u201cFederico II\u201d, Via Claudio 21, 80125, Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "University of Napoli \u201cFederico II\u201d, Via Claudio 21, 80125, Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Romano", 
        "givenName": "Simon Pietro", 
        "id": "sg:person.015750240721.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015750240721.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computing Department, InfoLab21, Lancaster University, Lancaster, UK", 
          "id": "http://www.grid.ac/institutes/grid.9835.7", 
          "name": [
            "Computing Department, InfoLab21, Lancaster University, Lancaster, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Simpson", 
        "givenName": "Steven", 
        "id": "sg:person.016715014563.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016715014563.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computing Department, InfoLab21, Lancaster University, Lancaster, UK", 
          "id": "http://www.grid.ac/institutes/grid.9835.7", 
          "name": [
            "Computing Department, InfoLab21, Lancaster University, Lancaster, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Paul", 
        "id": "sg:person.015112647531.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112647531.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computing Department, InfoLab21, Lancaster University, Lancaster, UK", 
          "id": "http://www.grid.ac/institutes/grid.9835.7", 
          "name": [
            "Computing Department, InfoLab21, Lancaster University, Lancaster, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hutchison", 
        "givenName": "David", 
        "id": "sg:person.012636622347.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012636622347.55"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "A suitable strategy for network intrusion tolerance\u2014 detecting intrusions and remedying them\u2014depends on aspects of the domain being protected, such as the kinds of intrusion faced, the resources available for monitoring and remediation, and the level at which automated remediation can be carried out. The decision to remediate autonomically will have to consider the relative costs of performing a potentially disruptive remedy in the wrong circumstances and leaving it up to a slow, but more accurate, human operator. Autonomic remediation also needs to be withdrawn at some point \u2013 a phase of recovery to the normal network state.In this paper, we present a framework for deploying domain-adaptable intrusion-tolerance strategies in heterogeneous networks. Functionality is divided into that which is fixed by the domain and that which should adapt, in order to cope with heterogeneity. The interactions between detection and remediation are considered in order to make a stable recovery decision. We also present a model for combining diverse sources of monitoring to improve accurate decision making, an important pre-requisite to automated remediation.", 
    "editor": [
      {
        "familyName": "Hummel", 
        "givenName": "Karin Anna", 
        "type": "Person"
      }, 
      {
        "familyName": "Sterbenz", 
        "givenName": "James P. G.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-92157-8_20", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-92156-1", 
        "978-3-540-92157-8"
      ], 
      "name": "Self-Organizing Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "heterogeneous networks", 
      "kinds of intrusions", 
      "accurate decision making", 
      "intrusion tolerance", 
      "human operator", 
      "network state", 
      "recovery decisions", 
      "normal network state", 
      "network", 
      "diverse sources", 
      "decision making", 
      "framework", 
      "wrong circumstances", 
      "functionality", 
      "domain", 
      "decisions", 
      "suitable strategy", 
      "monitoring", 
      "operators", 
      "resources", 
      "order", 
      "cost", 
      "detection", 
      "intrusion", 
      "strategies", 
      "kind", 
      "making", 
      "model", 
      "relative costs", 
      "aspects", 
      "point", 
      "state", 
      "source", 
      "circumstances", 
      "interaction", 
      "remedies", 
      "tolerance", 
      "heterogeneity", 
      "phase", 
      "levels", 
      "recovery", 
      "phases of recovery", 
      "remediation", 
      "paper", 
      "network intrusion tolerance\u2014 detecting intrusions", 
      "intrusion tolerance\u2014 detecting intrusions", 
      "tolerance\u2014 detecting intrusions", 
      "disruptive remedy", 
      "Autonomic remediation", 
      "domain-adaptable intrusion-tolerance strategies", 
      "intrusion-tolerance strategies", 
      "stable recovery decision", 
      "Semi-Autonomic Framework"
    ], 
    "name": "A Semi-Autonomic Framework for Intrusion Tolerance in Heterogeneous Networks", 
    "pagination": "230-241", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017734903"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-92157-8_20"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-92157-8_20", 
      "https://app.dimensions.ai/details/publication/pub.1017734903"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_103.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-92157-8_20"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-92157-8_20'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-92157-8_20'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-92157-8_20'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-92157-8_20'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      23 PREDICATES      79 URIs      72 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-92157-8_20 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N78b78e01404a45fd9f764bc4a5441cae
4 schema:datePublished 2008
5 schema:datePublishedReg 2008-01-01
6 schema:description A suitable strategy for network intrusion tolerance— detecting intrusions and remedying them—depends on aspects of the domain being protected, such as the kinds of intrusion faced, the resources available for monitoring and remediation, and the level at which automated remediation can be carried out. The decision to remediate autonomically will have to consider the relative costs of performing a potentially disruptive remedy in the wrong circumstances and leaving it up to a slow, but more accurate, human operator. Autonomic remediation also needs to be withdrawn at some point – a phase of recovery to the normal network state.In this paper, we present a framework for deploying domain-adaptable intrusion-tolerance strategies in heterogeneous networks. Functionality is divided into that which is fixed by the domain and that which should adapt, in order to cope with heterogeneity. The interactions between detection and remediation are considered in order to make a stable recovery decision. We also present a model for combining diverse sources of monitoring to improve accurate decision making, an important pre-requisite to automated remediation.
7 schema:editor N9c212389f96d41d2944aaa60fd16daf5
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N9a4aab764fea46f8ac7a5ef9bb71160a
12 schema:keywords Autonomic remediation
13 Semi-Autonomic Framework
14 accurate decision making
15 aspects
16 circumstances
17 cost
18 decision making
19 decisions
20 detection
21 disruptive remedy
22 diverse sources
23 domain
24 domain-adaptable intrusion-tolerance strategies
25 framework
26 functionality
27 heterogeneity
28 heterogeneous networks
29 human operator
30 interaction
31 intrusion
32 intrusion tolerance
33 intrusion tolerance— detecting intrusions
34 intrusion-tolerance strategies
35 kind
36 kinds of intrusions
37 levels
38 making
39 model
40 monitoring
41 network
42 network intrusion tolerance— detecting intrusions
43 network state
44 normal network state
45 operators
46 order
47 paper
48 phase
49 phases of recovery
50 point
51 recovery
52 recovery decisions
53 relative costs
54 remediation
55 remedies
56 resources
57 source
58 stable recovery decision
59 state
60 strategies
61 suitable strategy
62 tolerance
63 tolerance— detecting intrusions
64 wrong circumstances
65 schema:name A Semi-Autonomic Framework for Intrusion Tolerance in Heterogeneous Networks
66 schema:pagination 230-241
67 schema:productId N820621ec35c949b1a710c8d4212a1427
68 Nbaa07f894b934d9c866dd5fdc22c154d
69 schema:publisher N008acbd022b44605bb82c2d8f18b3d78
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017734903
71 https://doi.org/10.1007/978-3-540-92157-8_20
72 schema:sdDatePublished 2022-01-01T19:06
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N502a97d416124a5e956cf0572f3b2643
75 schema:url https://doi.org/10.1007/978-3-540-92157-8_20
76 sgo:license sg:explorer/license/
77 sgo:sdDataset chapters
78 rdf:type schema:Chapter
79 N008acbd022b44605bb82c2d8f18b3d78 schema:name Springer Nature
80 rdf:type schema:Organisation
81 N056698929fc9442c96c2734739200215 rdf:first N3115c5b001f14177b8bb9926aa9bcf9f
82 rdf:rest rdf:nil
83 N3115c5b001f14177b8bb9926aa9bcf9f schema:familyName Sterbenz
84 schema:givenName James P. G.
85 rdf:type schema:Person
86 N330fa9f9660f465cb8d7be49acb5d497 schema:familyName Hummel
87 schema:givenName Karin Anna
88 rdf:type schema:Person
89 N398712a6b49e4f65ab77480487b0b3c6 rdf:first sg:person.015112647531.58
90 rdf:rest N40abaecdea1f4093a4a92ad89a5ffb28
91 N40abaecdea1f4093a4a92ad89a5ffb28 rdf:first sg:person.012636622347.55
92 rdf:rest rdf:nil
93 N432eaed384104fe3ba2f104d4290f3a1 rdf:first sg:person.015750240721.94
94 rdf:rest N6ba4d6eeabb24d98ad4392f604bfe6b4
95 N502a97d416124a5e956cf0572f3b2643 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N6ba4d6eeabb24d98ad4392f604bfe6b4 rdf:first sg:person.016715014563.31
98 rdf:rest N398712a6b49e4f65ab77480487b0b3c6
99 N78b78e01404a45fd9f764bc4a5441cae rdf:first sg:person.010310265423.66
100 rdf:rest N432eaed384104fe3ba2f104d4290f3a1
101 N820621ec35c949b1a710c8d4212a1427 schema:name doi
102 schema:value 10.1007/978-3-540-92157-8_20
103 rdf:type schema:PropertyValue
104 N9a4aab764fea46f8ac7a5ef9bb71160a schema:isbn 978-3-540-92156-1
105 978-3-540-92157-8
106 schema:name Self-Organizing Systems
107 rdf:type schema:Book
108 N9c212389f96d41d2944aaa60fd16daf5 rdf:first N330fa9f9660f465cb8d7be49acb5d497
109 rdf:rest N056698929fc9442c96c2734739200215
110 Nbaa07f894b934d9c866dd5fdc22c154d schema:name dimensions_id
111 schema:value pub.1017734903
112 rdf:type schema:PropertyValue
113 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
114 schema:name Information and Computing Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
117 schema:name Artificial Intelligence and Image Processing
118 rdf:type schema:DefinedTerm
119 sg:person.010310265423.66 schema:affiliation grid-institutes:None
120 schema:familyName D’Antonio
121 schema:givenName Salvatore
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010310265423.66
123 rdf:type schema:Person
124 sg:person.012636622347.55 schema:affiliation grid-institutes:grid.9835.7
125 schema:familyName Hutchison
126 schema:givenName David
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012636622347.55
128 rdf:type schema:Person
129 sg:person.015112647531.58 schema:affiliation grid-institutes:grid.9835.7
130 schema:familyName Smith
131 schema:givenName Paul
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112647531.58
133 rdf:type schema:Person
134 sg:person.015750240721.94 schema:affiliation grid-institutes:grid.4691.a
135 schema:familyName Romano
136 schema:givenName Simon Pietro
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015750240721.94
138 rdf:type schema:Person
139 sg:person.016715014563.31 schema:affiliation grid-institutes:grid.9835.7
140 schema:familyName Simpson
141 schema:givenName Steven
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016715014563.31
143 rdf:type schema:Person
144 grid-institutes:None schema:alternateName CINI – ITeM Laboratory, Via Cinthia, 80126, Napoli, Italy
145 schema:name CINI – ITeM Laboratory, Via Cinthia, 80126, Napoli, Italy
146 rdf:type schema:Organization
147 grid-institutes:grid.4691.a schema:alternateName University of Napoli “Federico II”, Via Claudio 21, 80125, Napoli, Italy
148 schema:name University of Napoli “Federico II”, Via Claudio 21, 80125, Napoli, Italy
149 rdf:type schema:Organization
150 grid-institutes:grid.9835.7 schema:alternateName Computing Department, InfoLab21, Lancaster University, Lancaster, UK
151 schema:name Computing Department, InfoLab21, Lancaster University, Lancaster, UK
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...