High-Performance Image Annotation and Retrieval for Weakly Labeled Images Using Latent Space Learning View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Hideki Nakayama , Tatsuya Harada , Yasuo Kuniyoshi , Nobuyuki Otsu

ABSTRACT

Image annotation and retrieval are among the most promising new internet search technologies and have widespread applications. However, the task is very difficult because of the generic nature of the target images. In this paper, we propose a high speed and high accuracy image annotation and retrieval method for miscellaneous objects and scenes. This method combines the higher-order local auto-correlation (HLAC) features with the probabilistic canonical correlation analysis framework. A distance between images can be defined in the intrinsic feature space for annotation using latent space learning between images and labels. The HLAC features have additive and position invariance properties, which makes them well-suited for images in which the positions and number of objects are arbitrary. The proposed method is shown to be faster and more accurate than previously published methods. More... »

PAGES

601-610

References to SciGraph publications

Book

TITLE

Advances in Multimedia Information Processing - PCM 2008

ISBN

978-3-540-89795-8
978-3-540-89796-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-89796-5_62

DOI

http://dx.doi.org/10.1007/978-3-540-89796-5_62

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026145049


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Grad. School of Information Science and Technology, Dept. of Mechano-Informatics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakayama", 
        "givenName": "Hideki", 
        "id": "sg:person.015111344465.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015111344465.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Grad. School of Information Science and Technology, Dept. of Mechano-Informatics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harada", 
        "givenName": "Tatsuya", 
        "id": "sg:person.013240357031.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240357031.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Grad. School of Information Science and Technology, Dept. of Mechano-Informatics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuniyoshi", 
        "givenName": "Yasuo", 
        "id": "sg:person.013372311431.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013372311431.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "National Institute of Advanced Industrial Science and Technology, 1-1-1, Umezono, Tsukuba-shi, 305-8568, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Otsu", 
        "givenName": "Nobuyuki", 
        "id": "sg:person.013310442161.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310442161.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-47979-1_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040055518", 
          "https://doi.org/10.1007/3-540-47979-1_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/860435.860459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053524475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2007.61", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.1992.201616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086369738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094726175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2004.1315274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095228808"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "Image annotation and retrieval are among the most promising new internet search technologies and have widespread applications. However, the task is very difficult because of the generic nature of the target images. In this paper, we propose a high speed and high accuracy image annotation and retrieval method for miscellaneous objects and scenes. This method combines the higher-order local auto-correlation (HLAC) features with the probabilistic canonical correlation analysis framework. A distance between images can be defined in the intrinsic feature space for annotation using latent space learning between images and labels. The HLAC features have additive and position invariance properties, which makes them well-suited for images in which the positions and number of objects are arbitrary. The proposed method is shown to be faster and more accurate than previously published methods.", 
    "editor": [
      {
        "familyName": "Huang", 
        "givenName": "Yueh-Min Ray", 
        "type": "Person"
      }, 
      {
        "familyName": "Xu", 
        "givenName": "Changsheng", 
        "type": "Person"
      }, 
      {
        "familyName": "Cheng", 
        "givenName": "Kuo-Sheng", 
        "type": "Person"
      }, 
      {
        "familyName": "Yang", 
        "givenName": "Jar-Ferr Kevin", 
        "type": "Person"
      }, 
      {
        "familyName": "Swamy", 
        "givenName": "M. N. S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Shipeng", 
        "type": "Person"
      }, 
      {
        "familyName": "Ding", 
        "givenName": "Jen-Wen", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-89796-5_62", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-89795-8", 
        "978-3-540-89796-5"
      ], 
      "name": "Advances in Multimedia Information Processing - PCM 2008", 
      "type": "Book"
    }, 
    "name": "High-Performance Image Annotation and Retrieval for Weakly Labeled Images Using Latent Space Learning", 
    "pagination": "601-610", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-89796-5_62"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7c8dcbf8f0133699d61a6130a4e033385105792a9cd84eab692a175908d4f19e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026145049"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-89796-5_62", 
      "https://app.dimensions.ai/details/publication/pub.1026145049"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T06:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43238_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-89796-5_62"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89796-5_62'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89796-5_62'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89796-5_62'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89796-5_62'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-89796-5_62 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nbac82d4307944c74a79ef9fd395b81ac
4 schema:citation sg:pub.10.1007/3-540-47979-1_7
5 https://doi.org/10.1109/cvpr.2004.1315274
6 https://doi.org/10.1109/cvpr.2005.164
7 https://doi.org/10.1109/icpr.1992.201616
8 https://doi.org/10.1109/tpami.2007.61
9 https://doi.org/10.1145/860435.860459
10 schema:datePublished 2008
11 schema:datePublishedReg 2008-01-01
12 schema:description Image annotation and retrieval are among the most promising new internet search technologies and have widespread applications. However, the task is very difficult because of the generic nature of the target images. In this paper, we propose a high speed and high accuracy image annotation and retrieval method for miscellaneous objects and scenes. This method combines the higher-order local auto-correlation (HLAC) features with the probabilistic canonical correlation analysis framework. A distance between images can be defined in the intrinsic feature space for annotation using latent space learning between images and labels. The HLAC features have additive and position invariance properties, which makes them well-suited for images in which the positions and number of objects are arbitrary. The proposed method is shown to be faster and more accurate than previously published methods.
13 schema:editor N72fc4998757b4335974d1ed0d8e32eb3
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N3d44a9d6750c49658421e7db69fcfc80
18 schema:name High-Performance Image Annotation and Retrieval for Weakly Labeled Images Using Latent Space Learning
19 schema:pagination 601-610
20 schema:productId N3d7d0013521742ef9875d891ced085a3
21 N9325702eac92424eb94b5bbf660976ae
22 Ne06a993b9f8b4c04a355a86573d83f40
23 schema:publisher Na39f96e69da74effa6069b571ee58663
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026145049
25 https://doi.org/10.1007/978-3-540-89796-5_62
26 schema:sdDatePublished 2019-04-16T06:13
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N2e3a30c7d42e483180338c1429bb54ef
29 schema:url https://link.springer.com/10.1007%2F978-3-540-89796-5_62
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N2aaabad9a23a49b9aa69559e0ab61773 schema:familyName Yang
34 schema:givenName Jar-Ferr Kevin
35 rdf:type schema:Person
36 N2e3a30c7d42e483180338c1429bb54ef schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N3853b26e0e6d4055920cc70ade8e0eb5 schema:familyName Swamy
39 schema:givenName M. N. S.
40 rdf:type schema:Person
41 N3d44a9d6750c49658421e7db69fcfc80 schema:isbn 978-3-540-89795-8
42 978-3-540-89796-5
43 schema:name Advances in Multimedia Information Processing - PCM 2008
44 rdf:type schema:Book
45 N3d7d0013521742ef9875d891ced085a3 schema:name dimensions_id
46 schema:value pub.1026145049
47 rdf:type schema:PropertyValue
48 N58dacf4fa35a48788534eed368aa120c rdf:first sg:person.013310442161.39
49 rdf:rest rdf:nil
50 N5bdd8fcea30b4c2fa0fd65c246f37555 rdf:first N9da3492d2e7347f79e6d40c783422e05
51 rdf:rest rdf:nil
52 N5fecd58f6cc943fda4a24bd609cc7fa3 schema:familyName Cheng
53 schema:givenName Kuo-Sheng
54 rdf:type schema:Person
55 N717824088e3a45b18af9ed79c5de1df7 rdf:first sg:person.013240357031.31
56 rdf:rest Nbff86038fa7546cf83c370443dd3fd59
57 N72fc4998757b4335974d1ed0d8e32eb3 rdf:first Na3f15c2935494a2db80747a42da8ff8f
58 rdf:rest Nbc0a1779952444f29f0c9c6ea99f1495
59 N78e4038122894b3088fcb70ad44a5306 rdf:first N5fecd58f6cc943fda4a24bd609cc7fa3
60 rdf:rest Nfb1e6d0ad2a645ce9d3e9ffdcc7d0a4f
61 N7f27a7676f934e38a7c481c3485ed4d0 rdf:first N3853b26e0e6d4055920cc70ade8e0eb5
62 rdf:rest N909db7d1c6ff47f183349b26fe507c31
63 N909db7d1c6ff47f183349b26fe507c31 rdf:first Nf49c88501e7048069186c90239be2dea
64 rdf:rest N5bdd8fcea30b4c2fa0fd65c246f37555
65 N9325702eac92424eb94b5bbf660976ae schema:name doi
66 schema:value 10.1007/978-3-540-89796-5_62
67 rdf:type schema:PropertyValue
68 N9da3492d2e7347f79e6d40c783422e05 schema:familyName Ding
69 schema:givenName Jen-Wen
70 rdf:type schema:Person
71 Na39f96e69da74effa6069b571ee58663 schema:location Berlin, Heidelberg
72 schema:name Springer Berlin Heidelberg
73 rdf:type schema:Organisation
74 Na3f15c2935494a2db80747a42da8ff8f schema:familyName Huang
75 schema:givenName Yueh-Min Ray
76 rdf:type schema:Person
77 Nbac82d4307944c74a79ef9fd395b81ac rdf:first sg:person.015111344465.40
78 rdf:rest N717824088e3a45b18af9ed79c5de1df7
79 Nbc0a1779952444f29f0c9c6ea99f1495 rdf:first Nf5e7b3d693c8465e9eb1be6a529faa64
80 rdf:rest N78e4038122894b3088fcb70ad44a5306
81 Nbff86038fa7546cf83c370443dd3fd59 rdf:first sg:person.013372311431.62
82 rdf:rest N58dacf4fa35a48788534eed368aa120c
83 Ne06a993b9f8b4c04a355a86573d83f40 schema:name readcube_id
84 schema:value 7c8dcbf8f0133699d61a6130a4e033385105792a9cd84eab692a175908d4f19e
85 rdf:type schema:PropertyValue
86 Nf49c88501e7048069186c90239be2dea schema:familyName Li
87 schema:givenName Shipeng
88 rdf:type schema:Person
89 Nf5e7b3d693c8465e9eb1be6a529faa64 schema:familyName Xu
90 schema:givenName Changsheng
91 rdf:type schema:Person
92 Nfb1e6d0ad2a645ce9d3e9ffdcc7d0a4f rdf:first N2aaabad9a23a49b9aa69559e0ab61773
93 rdf:rest N7f27a7676f934e38a7c481c3485ed4d0
94 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
95 schema:name Information and Computing Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
98 schema:name Artificial Intelligence and Image Processing
99 rdf:type schema:DefinedTerm
100 sg:person.013240357031.31 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
101 schema:familyName Harada
102 schema:givenName Tatsuya
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240357031.31
104 rdf:type schema:Person
105 sg:person.013310442161.39 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
106 schema:familyName Otsu
107 schema:givenName Nobuyuki
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310442161.39
109 rdf:type schema:Person
110 sg:person.013372311431.62 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
111 schema:familyName Kuniyoshi
112 schema:givenName Yasuo
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013372311431.62
114 rdf:type schema:Person
115 sg:person.015111344465.40 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
116 schema:familyName Nakayama
117 schema:givenName Hideki
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015111344465.40
119 rdf:type schema:Person
120 sg:pub.10.1007/3-540-47979-1_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040055518
121 https://doi.org/10.1007/3-540-47979-1_7
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/cvpr.2004.1315274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095228808
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/cvpr.2005.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094726175
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/icpr.1992.201616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086369738
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/tpami.2007.61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743352
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1145/860435.860459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053524475
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.208504.b schema:alternateName National Institute of Advanced Industrial Science and Technology
134 schema:name National Institute of Advanced Industrial Science and Technology, 1-1-1, Umezono, Tsukuba-shi, 305-8568, Ibaraki, Japan
135 rdf:type schema:Organization
136 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
137 schema:name Grad. School of Information Science and Technology, Dept. of Mechano-Informatics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...