3D Line Reconstruction of a Road Environment Using an In-Vehicle Camera View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Toshihiro Asai , Koichiro Yamaguchi , Yoshiko Kojima , Takashi Naito , Yoshiki Ninomiya

ABSTRACT

This paper describes a method for reconstructing 3D straight lines in the road environment from an image sequence captured by an in-vehicle camera. An actual road environment includes many straight lines such as edges of buildings, utility poles and road markings. These 3D lines can be used effectively for understanding the road scene; our proposed method, therefore, aims to reconstruct the 3D lines using an in-vehicle camera. The camera motion and the 3D line parameters are estimated simultaneously by minimizing the reprojection errors of corresponding edge segments in the image sequence. In the road environment, a forward-looking in-vehicle camera has difficultly in establishing a large parallax for accurate estimation of parameters. The accuracy in estimating parameters is improved by using constraints defined on the basis of a general knowledge of the structures. In experiments on an actual road environment, the camera motion and the 3D line parameters have been estimated from detected edge segments. The accuracy of the 3D lines was evaluated by comparing the estimated position and reference positions. More... »

PAGES

897-904

References to SciGraph publications

  • 2002-04-12. Bundle Adjustment — A Modern Synthesis in VISION ALGORITHMS: THEORY AND PRACTICE
  • 1987-03. The viewpoint consistency constraint in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Book

    TITLE

    Advances in Visual Computing

    ISBN

    978-3-540-89645-6
    978-3-540-89646-3

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_89

    DOI

    http://dx.doi.org/10.1007/978-3-540-89646-3_89

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002372300


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.450319.a", 
              "name": [
                "Toyota Central R&D Labs., Inc. Road Environment Recognision Lab., 41-1 Yokomichi, Nagakute, Aichi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Asai", 
            "givenName": "Toshihiro", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.450319.a", 
              "name": [
                "Toyota Central R&D Labs., Inc. Road Environment Recognision Lab., 41-1 Yokomichi, Nagakute, Aichi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yamaguchi", 
            "givenName": "Koichiro", 
            "id": "sg:person.016347510427.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347510427.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.450319.a", 
              "name": [
                "Toyota Central R&D Labs., Inc. Road Environment Recognision Lab., 41-1 Yokomichi, Nagakute, Aichi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kojima", 
            "givenName": "Yoshiko", 
            "id": "sg:person.012163223320.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012163223320.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.450319.a", 
              "name": [
                "Toyota Central R&D Labs., Inc. Road Environment Recognision Lab., 41-1 Yokomichi, Nagakute, Aichi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Naito", 
            "givenName": "Takashi", 
            "id": "sg:person.016105331403.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016105331403.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.450319.a", 
              "name": [
                "Toyota Central R&D Labs., Inc. Road Environment Recognision Lab., 41-1 Yokomichi, Nagakute, Aichi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ninomiya", 
            "givenName": "Yoshiki", 
            "id": "sg:person.010246235477.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010246235477.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00128526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004547452", 
              "https://doi.org/10.1007/bf00128526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00128526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004547452", 
              "https://doi.org/10.1007/bf00128526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44480-7_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021371683", 
              "https://doi.org/10.1007/3-540-44480-7_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44480-7_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021371683", 
              "https://doi.org/10.1007/3-540-44480-7_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.380044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021704428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2005.10.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049632241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2005.10.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049632241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.206955", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061155797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.473228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.888718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcb.2003.814280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061796174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ismar.2004.53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093173080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/3dpvt.2006.90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093773413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/3dim.2005.3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094609897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/3dim.2007.16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095439911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2003.1211395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095715705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5244/c.2.23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099320318"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008", 
        "datePublishedReg": "2008-01-01", 
        "description": "This paper describes a method for reconstructing 3D straight lines in the road environment from an image sequence captured by an in-vehicle camera. An actual road environment includes many straight lines such as edges of buildings, utility poles and road markings. These 3D lines can be used effectively for understanding the road scene; our proposed method, therefore, aims to reconstruct the 3D lines using an in-vehicle camera. The camera motion and the 3D line parameters are estimated simultaneously by minimizing the reprojection errors of corresponding edge segments in the image sequence. In the road environment, a forward-looking in-vehicle camera has difficultly in establishing a large parallax for accurate estimation of parameters. The accuracy in estimating parameters is improved by using constraints defined on the basis of a general knowledge of the structures. In experiments on an actual road environment, the camera motion and the 3D line parameters have been estimated from detected edge segments. The accuracy of the 3D lines was evaluated by comparing the estimated position and reference positions.", 
        "editor": [
          {
            "familyName": "Bebis", 
            "givenName": "George", 
            "type": "Person"
          }, 
          {
            "familyName": "Boyle", 
            "givenName": "Richard", 
            "type": "Person"
          }, 
          {
            "familyName": "Parvin", 
            "givenName": "Bahram", 
            "type": "Person"
          }, 
          {
            "familyName": "Koracin", 
            "givenName": "Darko", 
            "type": "Person"
          }, 
          {
            "familyName": "Remagnino", 
            "givenName": "Paolo", 
            "type": "Person"
          }, 
          {
            "familyName": "Porikli", 
            "givenName": "Fatih", 
            "type": "Person"
          }, 
          {
            "familyName": "Peters", 
            "givenName": "J\u00f6rg", 
            "type": "Person"
          }, 
          {
            "familyName": "Klosowski", 
            "givenName": "James", 
            "type": "Person"
          }, 
          {
            "familyName": "Arns", 
            "givenName": "Laura", 
            "type": "Person"
          }, 
          {
            "familyName": "Chun", 
            "givenName": "Yu Ka", 
            "type": "Person"
          }, 
          {
            "familyName": "Rhyne", 
            "givenName": "Theresa-Marie", 
            "type": "Person"
          }, 
          {
            "familyName": "Monroe", 
            "givenName": "Laura", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-540-89646-3_89", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-540-89645-6", 
            "978-3-540-89646-3"
          ], 
          "name": "Advances in Visual Computing", 
          "type": "Book"
        }, 
        "name": "3D Line Reconstruction of a Road Environment Using an In-Vehicle Camera", 
        "pagination": "897-904", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-540-89646-3_89"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0b4bb42d62007868dc6d7d007287123086501fb9a6552bd75180c4b2621173b0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002372300"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-540-89646-3_89", 
          "https://app.dimensions.ai/details/publication/pub.1002372300"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T06:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43226_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-540-89646-3_89"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_89'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_89'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_89'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_89'


     

    This table displays all metadata directly associated to this object as RDF triples.

    191 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-540-89646-3_89 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N0377d9dcf0bb41a3bcf9b8e3fb7090b3
    4 schema:citation sg:pub.10.1007/3-540-44480-7_21
    5 sg:pub.10.1007/bf00128526
    6 https://doi.org/10.1016/j.patcog.2005.10.019
    7 https://doi.org/10.1109/34.206955
    8 https://doi.org/10.1109/34.473228
    9 https://doi.org/10.1109/34.888718
    10 https://doi.org/10.1109/3dim.2005.3
    11 https://doi.org/10.1109/3dim.2007.16
    12 https://doi.org/10.1109/3dpvt.2006.90
    13 https://doi.org/10.1109/cvpr.2003.1211395
    14 https://doi.org/10.1109/ismar.2004.53
    15 https://doi.org/10.1109/tsmcb.2003.814280
    16 https://doi.org/10.1117/12.380044
    17 https://doi.org/10.5244/c.2.23
    18 schema:datePublished 2008
    19 schema:datePublishedReg 2008-01-01
    20 schema:description This paper describes a method for reconstructing 3D straight lines in the road environment from an image sequence captured by an in-vehicle camera. An actual road environment includes many straight lines such as edges of buildings, utility poles and road markings. These 3D lines can be used effectively for understanding the road scene; our proposed method, therefore, aims to reconstruct the 3D lines using an in-vehicle camera. The camera motion and the 3D line parameters are estimated simultaneously by minimizing the reprojection errors of corresponding edge segments in the image sequence. In the road environment, a forward-looking in-vehicle camera has difficultly in establishing a large parallax for accurate estimation of parameters. The accuracy in estimating parameters is improved by using constraints defined on the basis of a general knowledge of the structures. In experiments on an actual road environment, the camera motion and the 3D line parameters have been estimated from detected edge segments. The accuracy of the 3D lines was evaluated by comparing the estimated position and reference positions.
    21 schema:editor Nef48544ceac144afb475c36aac7fb5bf
    22 schema:genre chapter
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf Nbe774dc419c4449294ff592363087340
    26 schema:name 3D Line Reconstruction of a Road Environment Using an In-Vehicle Camera
    27 schema:pagination 897-904
    28 schema:productId N4d8fe01acfc14e23b11d636a2c66343f
    29 N5fa8453e6c994b648199bcb50e281c59
    30 Ne847e1c7a4bf487d8a3a88e45c4e4c71
    31 schema:publisher Na4fa01be8f9b4256bf5b93a2fd66a272
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002372300
    33 https://doi.org/10.1007/978-3-540-89646-3_89
    34 schema:sdDatePublished 2019-04-16T06:12
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N8debb72035c244619c04a692b4f1c5b5
    37 schema:url https://link.springer.com/10.1007%2F978-3-540-89646-3_89
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset chapters
    40 rdf:type schema:Chapter
    41 N0377d9dcf0bb41a3bcf9b8e3fb7090b3 rdf:first N96acd802ef044451a20d9017c589ff78
    42 rdf:rest Nc6900e5866784f66856c97e54bf0db39
    43 N0c74d92c5f7e47a8b924a42442c17b58 rdf:first N79f641f0010c476aa5cb3a65f90bc1c0
    44 rdf:rest rdf:nil
    45 N0e90744a0289454ca95b2ebb8bc04f24 rdf:first sg:person.010246235477.54
    46 rdf:rest rdf:nil
    47 N1e93752873a14908a04c49bf4da81707 schema:familyName Arns
    48 schema:givenName Laura
    49 rdf:type schema:Person
    50 N2a8d09c16c2846a2bc63e5de17f5a6d0 schema:familyName Remagnino
    51 schema:givenName Paolo
    52 rdf:type schema:Person
    53 N2adca70cf1584005bced473a87599c83 rdf:first Nfaaf49339ee14ad0873135e895053803
    54 rdf:rest Na062adb0709240299c24fe901b9e6540
    55 N2c9909458b694a98873c2c1a1af0ed60 rdf:first Ndb0346580bcf474aa772256a97cbc0bd
    56 rdf:rest N47e8b344c87249f79799cfc6f5f45d5a
    57 N35314bf4434149dd91b7d95df95adabd rdf:first N50028aae666c454dbbb00e286875f939
    58 rdf:rest Ne3d9f0b3b01745c2a54a96cf60ccdda4
    59 N43dbc2001a684cc6bc129ff8e1c1d88c schema:familyName Boyle
    60 schema:givenName Richard
    61 rdf:type schema:Person
    62 N47e8b344c87249f79799cfc6f5f45d5a rdf:first N502d9eb8ae35413a99ff42d70aeb3720
    63 rdf:rest N0c74d92c5f7e47a8b924a42442c17b58
    64 N4818b47cc17f407d85688e35281a53ba schema:familyName Klosowski
    65 schema:givenName James
    66 rdf:type schema:Person
    67 N4d8fe01acfc14e23b11d636a2c66343f schema:name readcube_id
    68 schema:value 0b4bb42d62007868dc6d7d007287123086501fb9a6552bd75180c4b2621173b0
    69 rdf:type schema:PropertyValue
    70 N50028aae666c454dbbb00e286875f939 schema:familyName Koracin
    71 schema:givenName Darko
    72 rdf:type schema:Person
    73 N502d9eb8ae35413a99ff42d70aeb3720 schema:familyName Rhyne
    74 schema:givenName Theresa-Marie
    75 rdf:type schema:Person
    76 N5a69e9466e96471d96646e7740da2cab schema:familyName Bebis
    77 schema:givenName George
    78 rdf:type schema:Person
    79 N5fa8453e6c994b648199bcb50e281c59 schema:name dimensions_id
    80 schema:value pub.1002372300
    81 rdf:type schema:PropertyValue
    82 N5fb974df399548bcbab33fea9cb89c8f schema:familyName Peters
    83 schema:givenName Jörg
    84 rdf:type schema:Person
    85 N624c4bd77fd24fed844da76c6ae742b4 rdf:first sg:person.012163223320.75
    86 rdf:rest Nb7418d5e8a90466e82115d59e9195ccc
    87 N79f641f0010c476aa5cb3a65f90bc1c0 schema:familyName Monroe
    88 schema:givenName Laura
    89 rdf:type schema:Person
    90 N8debb72035c244619c04a692b4f1c5b5 schema:name Springer Nature - SN SciGraph project
    91 rdf:type schema:Organization
    92 N96acd802ef044451a20d9017c589ff78 schema:affiliation https://www.grid.ac/institutes/grid.450319.a
    93 schema:familyName Asai
    94 schema:givenName Toshihiro
    95 rdf:type schema:Person
    96 N9941de7cd9754e71a454f7903e45f509 rdf:first Nd0008dacd72740d49fb8fdb98ad7f0b7
    97 rdf:rest N35314bf4434149dd91b7d95df95adabd
    98 Na062adb0709240299c24fe901b9e6540 rdf:first N5fb974df399548bcbab33fea9cb89c8f
    99 rdf:rest Nde7294823c074b61b455a486a2c9c562
    100 Na4fa01be8f9b4256bf5b93a2fd66a272 schema:location Berlin, Heidelberg
    101 schema:name Springer Berlin Heidelberg
    102 rdf:type schema:Organisation
    103 Nb7418d5e8a90466e82115d59e9195ccc rdf:first sg:person.016105331403.49
    104 rdf:rest N0e90744a0289454ca95b2ebb8bc04f24
    105 Nbe774dc419c4449294ff592363087340 schema:isbn 978-3-540-89645-6
    106 978-3-540-89646-3
    107 schema:name Advances in Visual Computing
    108 rdf:type schema:Book
    109 Nc6900e5866784f66856c97e54bf0db39 rdf:first sg:person.016347510427.24
    110 rdf:rest N624c4bd77fd24fed844da76c6ae742b4
    111 Nd0008dacd72740d49fb8fdb98ad7f0b7 schema:familyName Parvin
    112 schema:givenName Bahram
    113 rdf:type schema:Person
    114 Ndb0346580bcf474aa772256a97cbc0bd schema:familyName Chun
    115 schema:givenName Yu Ka
    116 rdf:type schema:Person
    117 Nde7294823c074b61b455a486a2c9c562 rdf:first N4818b47cc17f407d85688e35281a53ba
    118 rdf:rest Ne7be996ba2df403891988cff582f888c
    119 Ndeed1006016747fc9a713b46f790a8fd rdf:first N43dbc2001a684cc6bc129ff8e1c1d88c
    120 rdf:rest N9941de7cd9754e71a454f7903e45f509
    121 Ne3d9f0b3b01745c2a54a96cf60ccdda4 rdf:first N2a8d09c16c2846a2bc63e5de17f5a6d0
    122 rdf:rest N2adca70cf1584005bced473a87599c83
    123 Ne7be996ba2df403891988cff582f888c rdf:first N1e93752873a14908a04c49bf4da81707
    124 rdf:rest N2c9909458b694a98873c2c1a1af0ed60
    125 Ne847e1c7a4bf487d8a3a88e45c4e4c71 schema:name doi
    126 schema:value 10.1007/978-3-540-89646-3_89
    127 rdf:type schema:PropertyValue
    128 Nef48544ceac144afb475c36aac7fb5bf rdf:first N5a69e9466e96471d96646e7740da2cab
    129 rdf:rest Ndeed1006016747fc9a713b46f790a8fd
    130 Nfaaf49339ee14ad0873135e895053803 schema:familyName Porikli
    131 schema:givenName Fatih
    132 rdf:type schema:Person
    133 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Information and Computing Sciences
    135 rdf:type schema:DefinedTerm
    136 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Artificial Intelligence and Image Processing
    138 rdf:type schema:DefinedTerm
    139 sg:person.010246235477.54 schema:affiliation https://www.grid.ac/institutes/grid.450319.a
    140 schema:familyName Ninomiya
    141 schema:givenName Yoshiki
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010246235477.54
    143 rdf:type schema:Person
    144 sg:person.012163223320.75 schema:affiliation https://www.grid.ac/institutes/grid.450319.a
    145 schema:familyName Kojima
    146 schema:givenName Yoshiko
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012163223320.75
    148 rdf:type schema:Person
    149 sg:person.016105331403.49 schema:affiliation https://www.grid.ac/institutes/grid.450319.a
    150 schema:familyName Naito
    151 schema:givenName Takashi
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016105331403.49
    153 rdf:type schema:Person
    154 sg:person.016347510427.24 schema:affiliation https://www.grid.ac/institutes/grid.450319.a
    155 schema:familyName Yamaguchi
    156 schema:givenName Koichiro
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347510427.24
    158 rdf:type schema:Person
    159 sg:pub.10.1007/3-540-44480-7_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021371683
    160 https://doi.org/10.1007/3-540-44480-7_21
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bf00128526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004547452
    163 https://doi.org/10.1007/bf00128526
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.patcog.2005.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049632241
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1109/34.206955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155797
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1109/34.473228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156313
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1109/34.888718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157189
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1109/3dim.2005.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094609897
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1109/3dim.2007.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095439911
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1109/3dpvt.2006.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093773413
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1109/cvpr.2003.1211395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095715705
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1109/ismar.2004.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093173080
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1109/tsmcb.2003.814280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796174
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1117/12.380044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021704428
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.5244/c.2.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099320318
    188 rdf:type schema:CreativeWork
    189 https://www.grid.ac/institutes/grid.450319.a schema:alternateName Toyota Central Research and Development Laboratories (Japan)
    190 schema:name Toyota Central R&D Labs., Inc. Road Environment Recognision Lab., 41-1 Yokomichi, Nagakute, Aichi, Japan
    191 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...