3D Line Reconstruction of a Road Environment Using an In-Vehicle Camera View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Toshihiro Asai , Koichiro Yamaguchi , Yoshiko Kojima , Takashi Naito , Yoshiki Ninomiya

ABSTRACT

This paper describes a method for reconstructing 3D straight lines in the road environment from an image sequence captured by an in-vehicle camera. An actual road environment includes many straight lines such as edges of buildings, utility poles and road markings. These 3D lines can be used effectively for understanding the road scene; our proposed method, therefore, aims to reconstruct the 3D lines using an in-vehicle camera. The camera motion and the 3D line parameters are estimated simultaneously by minimizing the reprojection errors of corresponding edge segments in the image sequence. In the road environment, a forward-looking in-vehicle camera has difficultly in establishing a large parallax for accurate estimation of parameters. The accuracy in estimating parameters is improved by using constraints defined on the basis of a general knowledge of the structures. In experiments on an actual road environment, the camera motion and the 3D line parameters have been estimated from detected edge segments. The accuracy of the 3D lines was evaluated by comparing the estimated position and reference positions. More... »

PAGES

897-904

References to SciGraph publications

  • 2002-04-12. Bundle Adjustment — A Modern Synthesis in VISION ALGORITHMS: THEORY AND PRACTICE
  • 1987-03. The viewpoint consistency constraint in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Book

    TITLE

    Advances in Visual Computing

    ISBN

    978-3-540-89645-6
    978-3-540-89646-3

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_89

    DOI

    http://dx.doi.org/10.1007/978-3-540-89646-3_89

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002372300


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.450319.a", 
              "name": [
                "Toyota Central R&D Labs., Inc. Road Environment Recognision Lab., 41-1 Yokomichi, Nagakute, Aichi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Asai", 
            "givenName": "Toshihiro", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.450319.a", 
              "name": [
                "Toyota Central R&D Labs., Inc. Road Environment Recognision Lab., 41-1 Yokomichi, Nagakute, Aichi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yamaguchi", 
            "givenName": "Koichiro", 
            "id": "sg:person.016347510427.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347510427.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.450319.a", 
              "name": [
                "Toyota Central R&D Labs., Inc. Road Environment Recognision Lab., 41-1 Yokomichi, Nagakute, Aichi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kojima", 
            "givenName": "Yoshiko", 
            "id": "sg:person.012163223320.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012163223320.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.450319.a", 
              "name": [
                "Toyota Central R&D Labs., Inc. Road Environment Recognision Lab., 41-1 Yokomichi, Nagakute, Aichi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Naito", 
            "givenName": "Takashi", 
            "id": "sg:person.016105331403.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016105331403.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.450319.a", 
              "name": [
                "Toyota Central R&D Labs., Inc. Road Environment Recognision Lab., 41-1 Yokomichi, Nagakute, Aichi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ninomiya", 
            "givenName": "Yoshiki", 
            "id": "sg:person.010246235477.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010246235477.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00128526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004547452", 
              "https://doi.org/10.1007/bf00128526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00128526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004547452", 
              "https://doi.org/10.1007/bf00128526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44480-7_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021371683", 
              "https://doi.org/10.1007/3-540-44480-7_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44480-7_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021371683", 
              "https://doi.org/10.1007/3-540-44480-7_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.380044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021704428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2005.10.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049632241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2005.10.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049632241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.206955", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061155797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.473228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.888718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcb.2003.814280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061796174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ismar.2004.53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093173080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/3dpvt.2006.90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093773413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/3dim.2005.3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094609897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/3dim.2007.16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095439911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2003.1211395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095715705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5244/c.2.23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099320318"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008", 
        "datePublishedReg": "2008-01-01", 
        "description": "This paper describes a method for reconstructing 3D straight lines in the road environment from an image sequence captured by an in-vehicle camera. An actual road environment includes many straight lines such as edges of buildings, utility poles and road markings. These 3D lines can be used effectively for understanding the road scene; our proposed method, therefore, aims to reconstruct the 3D lines using an in-vehicle camera. The camera motion and the 3D line parameters are estimated simultaneously by minimizing the reprojection errors of corresponding edge segments in the image sequence. In the road environment, a forward-looking in-vehicle camera has difficultly in establishing a large parallax for accurate estimation of parameters. The accuracy in estimating parameters is improved by using constraints defined on the basis of a general knowledge of the structures. In experiments on an actual road environment, the camera motion and the 3D line parameters have been estimated from detected edge segments. The accuracy of the 3D lines was evaluated by comparing the estimated position and reference positions.", 
        "editor": [
          {
            "familyName": "Bebis", 
            "givenName": "George", 
            "type": "Person"
          }, 
          {
            "familyName": "Boyle", 
            "givenName": "Richard", 
            "type": "Person"
          }, 
          {
            "familyName": "Parvin", 
            "givenName": "Bahram", 
            "type": "Person"
          }, 
          {
            "familyName": "Koracin", 
            "givenName": "Darko", 
            "type": "Person"
          }, 
          {
            "familyName": "Remagnino", 
            "givenName": "Paolo", 
            "type": "Person"
          }, 
          {
            "familyName": "Porikli", 
            "givenName": "Fatih", 
            "type": "Person"
          }, 
          {
            "familyName": "Peters", 
            "givenName": "J\u00f6rg", 
            "type": "Person"
          }, 
          {
            "familyName": "Klosowski", 
            "givenName": "James", 
            "type": "Person"
          }, 
          {
            "familyName": "Arns", 
            "givenName": "Laura", 
            "type": "Person"
          }, 
          {
            "familyName": "Chun", 
            "givenName": "Yu Ka", 
            "type": "Person"
          }, 
          {
            "familyName": "Rhyne", 
            "givenName": "Theresa-Marie", 
            "type": "Person"
          }, 
          {
            "familyName": "Monroe", 
            "givenName": "Laura", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-540-89646-3_89", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-540-89645-6", 
            "978-3-540-89646-3"
          ], 
          "name": "Advances in Visual Computing", 
          "type": "Book"
        }, 
        "name": "3D Line Reconstruction of a Road Environment Using an In-Vehicle Camera", 
        "pagination": "897-904", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-540-89646-3_89"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0b4bb42d62007868dc6d7d007287123086501fb9a6552bd75180c4b2621173b0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002372300"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-540-89646-3_89", 
          "https://app.dimensions.ai/details/publication/pub.1002372300"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T06:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43226_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-540-89646-3_89"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_89'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_89'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_89'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_89'


     

    This table displays all metadata directly associated to this object as RDF triples.

    191 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-540-89646-3_89 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N28af5bd34a6741d384b0b664ee381292
    4 schema:citation sg:pub.10.1007/3-540-44480-7_21
    5 sg:pub.10.1007/bf00128526
    6 https://doi.org/10.1016/j.patcog.2005.10.019
    7 https://doi.org/10.1109/34.206955
    8 https://doi.org/10.1109/34.473228
    9 https://doi.org/10.1109/34.888718
    10 https://doi.org/10.1109/3dim.2005.3
    11 https://doi.org/10.1109/3dim.2007.16
    12 https://doi.org/10.1109/3dpvt.2006.90
    13 https://doi.org/10.1109/cvpr.2003.1211395
    14 https://doi.org/10.1109/ismar.2004.53
    15 https://doi.org/10.1109/tsmcb.2003.814280
    16 https://doi.org/10.1117/12.380044
    17 https://doi.org/10.5244/c.2.23
    18 schema:datePublished 2008
    19 schema:datePublishedReg 2008-01-01
    20 schema:description This paper describes a method for reconstructing 3D straight lines in the road environment from an image sequence captured by an in-vehicle camera. An actual road environment includes many straight lines such as edges of buildings, utility poles and road markings. These 3D lines can be used effectively for understanding the road scene; our proposed method, therefore, aims to reconstruct the 3D lines using an in-vehicle camera. The camera motion and the 3D line parameters are estimated simultaneously by minimizing the reprojection errors of corresponding edge segments in the image sequence. In the road environment, a forward-looking in-vehicle camera has difficultly in establishing a large parallax for accurate estimation of parameters. The accuracy in estimating parameters is improved by using constraints defined on the basis of a general knowledge of the structures. In experiments on an actual road environment, the camera motion and the 3D line parameters have been estimated from detected edge segments. The accuracy of the 3D lines was evaluated by comparing the estimated position and reference positions.
    21 schema:editor Nc75957cae06c4ffa995454dd3b8bec6c
    22 schema:genre chapter
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N60409903cf25452da211ed933a878106
    26 schema:name 3D Line Reconstruction of a Road Environment Using an In-Vehicle Camera
    27 schema:pagination 897-904
    28 schema:productId N4d02586552cc458799a73e31f22e5f7a
    29 Ne3448495bc194f319d9ee02a315deff9
    30 Ne59db6007afd4ae6bc5e2a2ea64b6684
    31 schema:publisher N6c90adb33cca4f19af96b381775df176
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002372300
    33 https://doi.org/10.1007/978-3-540-89646-3_89
    34 schema:sdDatePublished 2019-04-16T06:12
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher Nccf4b8e292114dab86c2b81670071335
    37 schema:url https://link.springer.com/10.1007%2F978-3-540-89646-3_89
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset chapters
    40 rdf:type schema:Chapter
    41 N00af40102ab8496b8cf37a0dc64437e6 rdf:first N85f8452b34414bcda552b31c4898e8ea
    42 rdf:rest Na9a566d0d6014516a436456350a99e13
    43 N183597e89bea40ffa35fe01283606029 rdf:first Nbd4eb9cac9b344dab182a943db7fd12c
    44 rdf:rest N3ff4b512bdcb48d6a561a23f4f08be52
    45 N26561846da5d4a73855d2462709d56f4 schema:familyName Bebis
    46 schema:givenName George
    47 rdf:type schema:Person
    48 N28af5bd34a6741d384b0b664ee381292 rdf:first N7ab911f2d6ab410b9d9035878fab35db
    49 rdf:rest Ne38e7bbd8c874ffdb7397626e2dbbe74
    50 N392af1fc70f347fdae3b10b323037ea4 rdf:first sg:person.012163223320.75
    51 rdf:rest Na701a5380130473589f014499e4026f4
    52 N3b334cdb0d1c4a36815a5c62c8414a54 rdf:first N7cbcd18adbc84facb36c7d4c29038a3a
    53 rdf:rest N7cb6529fb9e1410f8f330f743487f08d
    54 N3ff4b512bdcb48d6a561a23f4f08be52 rdf:first Nd36c1405e6b440b0bea887f7780936bb
    55 rdf:rest N50f46bbcd97e4f70a676127cb1462556
    56 N4498077e0ee840ca8703d33f33dd5489 rdf:first N8a04ffd2f34b4fa493c73ea63c0e8637
    57 rdf:rest rdf:nil
    58 N4d02586552cc458799a73e31f22e5f7a schema:name doi
    59 schema:value 10.1007/978-3-540-89646-3_89
    60 rdf:type schema:PropertyValue
    61 N50f46bbcd97e4f70a676127cb1462556 rdf:first Nda12cd0d8c054329b30bdaf61cb5ec44
    62 rdf:rest N3b334cdb0d1c4a36815a5c62c8414a54
    63 N5413efe2fc7c4efe9d1d95bd1c032b10 rdf:first N9775d6473bc14089896050b95de2ba3f
    64 rdf:rest N4498077e0ee840ca8703d33f33dd5489
    65 N554bf4fcc7f54838830213cfd04e2a71 rdf:first sg:person.010246235477.54
    66 rdf:rest rdf:nil
    67 N60409903cf25452da211ed933a878106 schema:isbn 978-3-540-89645-6
    68 978-3-540-89646-3
    69 schema:name Advances in Visual Computing
    70 rdf:type schema:Book
    71 N6c90adb33cca4f19af96b381775df176 schema:location Berlin, Heidelberg
    72 schema:name Springer Berlin Heidelberg
    73 rdf:type schema:Organisation
    74 N72974cbcb58f4f5bbc5081139e28388a rdf:first Nbc8907fa07214c0a97d918bdaebf11f6
    75 rdf:rest Nb4336663123048b898a76a985e2aec43
    76 N7ab911f2d6ab410b9d9035878fab35db schema:affiliation https://www.grid.ac/institutes/grid.450319.a
    77 schema:familyName Asai
    78 schema:givenName Toshihiro
    79 rdf:type schema:Person
    80 N7cb6529fb9e1410f8f330f743487f08d rdf:first Nc65ac4dfe75e49ba88eaf275c5e01c29
    81 rdf:rest N00af40102ab8496b8cf37a0dc64437e6
    82 N7cbcd18adbc84facb36c7d4c29038a3a schema:familyName Remagnino
    83 schema:givenName Paolo
    84 rdf:type schema:Person
    85 N85f8452b34414bcda552b31c4898e8ea schema:familyName Peters
    86 schema:givenName Jörg
    87 rdf:type schema:Person
    88 N8a04ffd2f34b4fa493c73ea63c0e8637 schema:familyName Monroe
    89 schema:givenName Laura
    90 rdf:type schema:Person
    91 N9775d6473bc14089896050b95de2ba3f schema:familyName Rhyne
    92 schema:givenName Theresa-Marie
    93 rdf:type schema:Person
    94 Na701a5380130473589f014499e4026f4 rdf:first sg:person.016105331403.49
    95 rdf:rest N554bf4fcc7f54838830213cfd04e2a71
    96 Na9a566d0d6014516a436456350a99e13 rdf:first Nadd215af151d4b44982b3957708fd357
    97 rdf:rest N72974cbcb58f4f5bbc5081139e28388a
    98 Nadd215af151d4b44982b3957708fd357 schema:familyName Klosowski
    99 schema:givenName James
    100 rdf:type schema:Person
    101 Nb4336663123048b898a76a985e2aec43 rdf:first Neecbe0f1bee148849b4f4d2c2a473800
    102 rdf:rest N5413efe2fc7c4efe9d1d95bd1c032b10
    103 Nbc8907fa07214c0a97d918bdaebf11f6 schema:familyName Arns
    104 schema:givenName Laura
    105 rdf:type schema:Person
    106 Nbd4eb9cac9b344dab182a943db7fd12c schema:familyName Boyle
    107 schema:givenName Richard
    108 rdf:type schema:Person
    109 Nc65ac4dfe75e49ba88eaf275c5e01c29 schema:familyName Porikli
    110 schema:givenName Fatih
    111 rdf:type schema:Person
    112 Nc75957cae06c4ffa995454dd3b8bec6c rdf:first N26561846da5d4a73855d2462709d56f4
    113 rdf:rest N183597e89bea40ffa35fe01283606029
    114 Nccf4b8e292114dab86c2b81670071335 schema:name Springer Nature - SN SciGraph project
    115 rdf:type schema:Organization
    116 Nd36c1405e6b440b0bea887f7780936bb schema:familyName Parvin
    117 schema:givenName Bahram
    118 rdf:type schema:Person
    119 Nda12cd0d8c054329b30bdaf61cb5ec44 schema:familyName Koracin
    120 schema:givenName Darko
    121 rdf:type schema:Person
    122 Ne3448495bc194f319d9ee02a315deff9 schema:name dimensions_id
    123 schema:value pub.1002372300
    124 rdf:type schema:PropertyValue
    125 Ne38e7bbd8c874ffdb7397626e2dbbe74 rdf:first sg:person.016347510427.24
    126 rdf:rest N392af1fc70f347fdae3b10b323037ea4
    127 Ne59db6007afd4ae6bc5e2a2ea64b6684 schema:name readcube_id
    128 schema:value 0b4bb42d62007868dc6d7d007287123086501fb9a6552bd75180c4b2621173b0
    129 rdf:type schema:PropertyValue
    130 Neecbe0f1bee148849b4f4d2c2a473800 schema:familyName Chun
    131 schema:givenName Yu Ka
    132 rdf:type schema:Person
    133 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Information and Computing Sciences
    135 rdf:type schema:DefinedTerm
    136 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Artificial Intelligence and Image Processing
    138 rdf:type schema:DefinedTerm
    139 sg:person.010246235477.54 schema:affiliation https://www.grid.ac/institutes/grid.450319.a
    140 schema:familyName Ninomiya
    141 schema:givenName Yoshiki
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010246235477.54
    143 rdf:type schema:Person
    144 sg:person.012163223320.75 schema:affiliation https://www.grid.ac/institutes/grid.450319.a
    145 schema:familyName Kojima
    146 schema:givenName Yoshiko
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012163223320.75
    148 rdf:type schema:Person
    149 sg:person.016105331403.49 schema:affiliation https://www.grid.ac/institutes/grid.450319.a
    150 schema:familyName Naito
    151 schema:givenName Takashi
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016105331403.49
    153 rdf:type schema:Person
    154 sg:person.016347510427.24 schema:affiliation https://www.grid.ac/institutes/grid.450319.a
    155 schema:familyName Yamaguchi
    156 schema:givenName Koichiro
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347510427.24
    158 rdf:type schema:Person
    159 sg:pub.10.1007/3-540-44480-7_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021371683
    160 https://doi.org/10.1007/3-540-44480-7_21
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bf00128526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004547452
    163 https://doi.org/10.1007/bf00128526
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.patcog.2005.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049632241
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1109/34.206955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155797
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1109/34.473228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156313
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1109/34.888718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157189
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1109/3dim.2005.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094609897
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1109/3dim.2007.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095439911
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1109/3dpvt.2006.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093773413
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1109/cvpr.2003.1211395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095715705
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1109/ismar.2004.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093173080
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1109/tsmcb.2003.814280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796174
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1117/12.380044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021704428
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.5244/c.2.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099320318
    188 rdf:type schema:CreativeWork
    189 https://www.grid.ac/institutes/grid.450319.a schema:alternateName Toyota Central Research and Development Laboratories (Japan)
    190 schema:name Toyota Central R&D Labs., Inc. Road Environment Recognision Lab., 41-1 Yokomichi, Nagakute, Aichi, Japan
    191 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...