3D Line Reconstruction of a Road Environment Using an In-Vehicle Camera View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Toshihiro Asai , Koichiro Yamaguchi , Yoshiko Kojima , Takashi Naito , Yoshiki Ninomiya

ABSTRACT

This paper describes a method for reconstructing 3D straight lines in the road environment from an image sequence captured by an in-vehicle camera. An actual road environment includes many straight lines such as edges of buildings, utility poles and road markings. These 3D lines can be used effectively for understanding the road scene; our proposed method, therefore, aims to reconstruct the 3D lines using an in-vehicle camera. The camera motion and the 3D line parameters are estimated simultaneously by minimizing the reprojection errors of corresponding edge segments in the image sequence. In the road environment, a forward-looking in-vehicle camera has difficultly in establishing a large parallax for accurate estimation of parameters. The accuracy in estimating parameters is improved by using constraints defined on the basis of a general knowledge of the structures. In experiments on an actual road environment, the camera motion and the 3D line parameters have been estimated from detected edge segments. The accuracy of the 3D lines was evaluated by comparing the estimated position and reference positions. More... »

PAGES

897-904

References to SciGraph publications

  • 2002-04-12. Bundle Adjustment — A Modern Synthesis in VISION ALGORITHMS: THEORY AND PRACTICE
  • 1987-03. The viewpoint consistency constraint in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Book

    TITLE

    Advances in Visual Computing

    ISBN

    978-3-540-89645-6
    978-3-540-89646-3

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_89

    DOI

    http://dx.doi.org/10.1007/978-3-540-89646-3_89

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002372300


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.450319.a", 
              "name": [
                "Toyota Central R&D Labs., Inc. Road Environment Recognision Lab., 41-1 Yokomichi, Nagakute, Aichi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Asai", 
            "givenName": "Toshihiro", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.450319.a", 
              "name": [
                "Toyota Central R&D Labs., Inc. Road Environment Recognision Lab., 41-1 Yokomichi, Nagakute, Aichi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yamaguchi", 
            "givenName": "Koichiro", 
            "id": "sg:person.016347510427.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347510427.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.450319.a", 
              "name": [
                "Toyota Central R&D Labs., Inc. Road Environment Recognision Lab., 41-1 Yokomichi, Nagakute, Aichi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kojima", 
            "givenName": "Yoshiko", 
            "id": "sg:person.012163223320.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012163223320.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.450319.a", 
              "name": [
                "Toyota Central R&D Labs., Inc. Road Environment Recognision Lab., 41-1 Yokomichi, Nagakute, Aichi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Naito", 
            "givenName": "Takashi", 
            "id": "sg:person.016105331403.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016105331403.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
              "id": "https://www.grid.ac/institutes/grid.450319.a", 
              "name": [
                "Toyota Central R&D Labs., Inc. Road Environment Recognision Lab., 41-1 Yokomichi, Nagakute, Aichi, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ninomiya", 
            "givenName": "Yoshiki", 
            "id": "sg:person.010246235477.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010246235477.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00128526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004547452", 
              "https://doi.org/10.1007/bf00128526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00128526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004547452", 
              "https://doi.org/10.1007/bf00128526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44480-7_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021371683", 
              "https://doi.org/10.1007/3-540-44480-7_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44480-7_21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021371683", 
              "https://doi.org/10.1007/3-540-44480-7_21"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.380044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021704428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2005.10.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049632241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.patcog.2005.10.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049632241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.206955", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061155797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.473228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.888718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcb.2003.814280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061796174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ismar.2004.53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093173080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/3dpvt.2006.90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093773413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/3dim.2005.3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094609897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/3dim.2007.16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095439911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2003.1211395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095715705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5244/c.2.23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099320318"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008", 
        "datePublishedReg": "2008-01-01", 
        "description": "This paper describes a method for reconstructing 3D straight lines in the road environment from an image sequence captured by an in-vehicle camera. An actual road environment includes many straight lines such as edges of buildings, utility poles and road markings. These 3D lines can be used effectively for understanding the road scene; our proposed method, therefore, aims to reconstruct the 3D lines using an in-vehicle camera. The camera motion and the 3D line parameters are estimated simultaneously by minimizing the reprojection errors of corresponding edge segments in the image sequence. In the road environment, a forward-looking in-vehicle camera has difficultly in establishing a large parallax for accurate estimation of parameters. The accuracy in estimating parameters is improved by using constraints defined on the basis of a general knowledge of the structures. In experiments on an actual road environment, the camera motion and the 3D line parameters have been estimated from detected edge segments. The accuracy of the 3D lines was evaluated by comparing the estimated position and reference positions.", 
        "editor": [
          {
            "familyName": "Bebis", 
            "givenName": "George", 
            "type": "Person"
          }, 
          {
            "familyName": "Boyle", 
            "givenName": "Richard", 
            "type": "Person"
          }, 
          {
            "familyName": "Parvin", 
            "givenName": "Bahram", 
            "type": "Person"
          }, 
          {
            "familyName": "Koracin", 
            "givenName": "Darko", 
            "type": "Person"
          }, 
          {
            "familyName": "Remagnino", 
            "givenName": "Paolo", 
            "type": "Person"
          }, 
          {
            "familyName": "Porikli", 
            "givenName": "Fatih", 
            "type": "Person"
          }, 
          {
            "familyName": "Peters", 
            "givenName": "J\u00f6rg", 
            "type": "Person"
          }, 
          {
            "familyName": "Klosowski", 
            "givenName": "James", 
            "type": "Person"
          }, 
          {
            "familyName": "Arns", 
            "givenName": "Laura", 
            "type": "Person"
          }, 
          {
            "familyName": "Chun", 
            "givenName": "Yu Ka", 
            "type": "Person"
          }, 
          {
            "familyName": "Rhyne", 
            "givenName": "Theresa-Marie", 
            "type": "Person"
          }, 
          {
            "familyName": "Monroe", 
            "givenName": "Laura", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-540-89646-3_89", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-540-89645-6", 
            "978-3-540-89646-3"
          ], 
          "name": "Advances in Visual Computing", 
          "type": "Book"
        }, 
        "name": "3D Line Reconstruction of a Road Environment Using an In-Vehicle Camera", 
        "pagination": "897-904", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-540-89646-3_89"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0b4bb42d62007868dc6d7d007287123086501fb9a6552bd75180c4b2621173b0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002372300"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-540-89646-3_89", 
          "https://app.dimensions.ai/details/publication/pub.1002372300"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T06:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43226_00000000.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-540-89646-3_89"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_89'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_89'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_89'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_89'


     

    This table displays all metadata directly associated to this object as RDF triples.

    191 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-540-89646-3_89 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N4b05fc0a85b14a26acbb57db534c7561
    4 schema:citation sg:pub.10.1007/3-540-44480-7_21
    5 sg:pub.10.1007/bf00128526
    6 https://doi.org/10.1016/j.patcog.2005.10.019
    7 https://doi.org/10.1109/34.206955
    8 https://doi.org/10.1109/34.473228
    9 https://doi.org/10.1109/34.888718
    10 https://doi.org/10.1109/3dim.2005.3
    11 https://doi.org/10.1109/3dim.2007.16
    12 https://doi.org/10.1109/3dpvt.2006.90
    13 https://doi.org/10.1109/cvpr.2003.1211395
    14 https://doi.org/10.1109/ismar.2004.53
    15 https://doi.org/10.1109/tsmcb.2003.814280
    16 https://doi.org/10.1117/12.380044
    17 https://doi.org/10.5244/c.2.23
    18 schema:datePublished 2008
    19 schema:datePublishedReg 2008-01-01
    20 schema:description This paper describes a method for reconstructing 3D straight lines in the road environment from an image sequence captured by an in-vehicle camera. An actual road environment includes many straight lines such as edges of buildings, utility poles and road markings. These 3D lines can be used effectively for understanding the road scene; our proposed method, therefore, aims to reconstruct the 3D lines using an in-vehicle camera. The camera motion and the 3D line parameters are estimated simultaneously by minimizing the reprojection errors of corresponding edge segments in the image sequence. In the road environment, a forward-looking in-vehicle camera has difficultly in establishing a large parallax for accurate estimation of parameters. The accuracy in estimating parameters is improved by using constraints defined on the basis of a general knowledge of the structures. In experiments on an actual road environment, the camera motion and the 3D line parameters have been estimated from detected edge segments. The accuracy of the 3D lines was evaluated by comparing the estimated position and reference positions.
    21 schema:editor N61b0639a6d4d4616a53cad0e93245cca
    22 schema:genre chapter
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N00074371072d4cfdb148f844bdb8010d
    26 schema:name 3D Line Reconstruction of a Road Environment Using an In-Vehicle Camera
    27 schema:pagination 897-904
    28 schema:productId N395f1e37cb834615ba7fa148166c2955
    29 N521a90c207014020b8a6135192f666c4
    30 Ne3b64f0840e8472096cdd82c45951aa1
    31 schema:publisher Nbb297cf5ea4b483595112652dc4a2643
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002372300
    33 https://doi.org/10.1007/978-3-540-89646-3_89
    34 schema:sdDatePublished 2019-04-16T06:12
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N3927466a82d843ee915cd73d084c246a
    37 schema:url https://link.springer.com/10.1007%2F978-3-540-89646-3_89
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset chapters
    40 rdf:type schema:Chapter
    41 N00074371072d4cfdb148f844bdb8010d schema:isbn 978-3-540-89645-6
    42 978-3-540-89646-3
    43 schema:name Advances in Visual Computing
    44 rdf:type schema:Book
    45 N02a69874766741cb87db42e7b247cb6c schema:familyName Peters
    46 schema:givenName Jörg
    47 rdf:type schema:Person
    48 N082a360ce3724f739854f3618bd26a49 rdf:first N22ad8e4362814da9995578ad6f598d48
    49 rdf:rest N4e96c43a2c62492cb20dc4d8ac4abe94
    50 N199818d4cc58481ca08f4df955832e33 schema:familyName Chun
    51 schema:givenName Yu Ka
    52 rdf:type schema:Person
    53 N22ad8e4362814da9995578ad6f598d48 schema:familyName Rhyne
    54 schema:givenName Theresa-Marie
    55 rdf:type schema:Person
    56 N24f4b3fe0e5e4e0496b01177ec51a239 schema:familyName Klosowski
    57 schema:givenName James
    58 rdf:type schema:Person
    59 N2e5bcb9ddd964646870553aaf528f687 rdf:first N4a07e3bd70f14da1a05a33ba52e6a32a
    60 rdf:rest N6bda3053e2d34a7ab74389356caca062
    61 N3927466a82d843ee915cd73d084c246a schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 N395f1e37cb834615ba7fa148166c2955 schema:name readcube_id
    64 schema:value 0b4bb42d62007868dc6d7d007287123086501fb9a6552bd75180c4b2621173b0
    65 rdf:type schema:PropertyValue
    66 N3b40792b6b544731916e9bc868e5e48f rdf:first N02a69874766741cb87db42e7b247cb6c
    67 rdf:rest N76311f1f8edd4b8dbbbf6ff5b3879fd0
    68 N4a07e3bd70f14da1a05a33ba52e6a32a schema:familyName Parvin
    69 schema:givenName Bahram
    70 rdf:type schema:Person
    71 N4b05fc0a85b14a26acbb57db534c7561 rdf:first Nc49ebc22594a463a9520f0bae5ea36ee
    72 rdf:rest N60405309c1ea4195a9a3cb26205baf44
    73 N4e96c43a2c62492cb20dc4d8ac4abe94 rdf:first Nac26a43ff72a4f63b18152f3cfc93bfc
    74 rdf:rest rdf:nil
    75 N521a90c207014020b8a6135192f666c4 schema:name doi
    76 schema:value 10.1007/978-3-540-89646-3_89
    77 rdf:type schema:PropertyValue
    78 N60405309c1ea4195a9a3cb26205baf44 rdf:first sg:person.016347510427.24
    79 rdf:rest Ne0bb5ab6965f4c54852a07b64106ab0a
    80 N61b0639a6d4d4616a53cad0e93245cca rdf:first Nc520ef4c154949e18e9592dd5400b224
    81 rdf:rest N9923198aa5b74db3b2573dd9fb6dfc6a
    82 N6bda3053e2d34a7ab74389356caca062 rdf:first Nea84cb716d5e4c75a2c1ab92c7daf2d1
    83 rdf:rest Nd78d0a8b16254636a74b5631f18b36e1
    84 N74286bbdb48f4f32bbf405c895de269b schema:familyName Arns
    85 schema:givenName Laura
    86 rdf:type schema:Person
    87 N76311f1f8edd4b8dbbbf6ff5b3879fd0 rdf:first N24f4b3fe0e5e4e0496b01177ec51a239
    88 rdf:rest Ncf7a32d0904c421a8189513dfa329578
    89 N834e2dcba0b74a7d886442589524931f rdf:first N199818d4cc58481ca08f4df955832e33
    90 rdf:rest N082a360ce3724f739854f3618bd26a49
    91 N8f6ec59312e04734ad9fab2a2973931a rdf:first sg:person.010246235477.54
    92 rdf:rest rdf:nil
    93 N9923198aa5b74db3b2573dd9fb6dfc6a rdf:first Nb9607896e3694793810a1f3f32f27a2f
    94 rdf:rest N2e5bcb9ddd964646870553aaf528f687
    95 Naa1d24aa17394d9aa2134641265f03c9 rdf:first Ne3c50d60162641e19ba92e8869a7e155
    96 rdf:rest N3b40792b6b544731916e9bc868e5e48f
    97 Nac26a43ff72a4f63b18152f3cfc93bfc schema:familyName Monroe
    98 schema:givenName Laura
    99 rdf:type schema:Person
    100 Nace87e7db299436d8c933b238e3e908a schema:familyName Remagnino
    101 schema:givenName Paolo
    102 rdf:type schema:Person
    103 Nb9607896e3694793810a1f3f32f27a2f schema:familyName Boyle
    104 schema:givenName Richard
    105 rdf:type schema:Person
    106 Nbb297cf5ea4b483595112652dc4a2643 schema:location Berlin, Heidelberg
    107 schema:name Springer Berlin Heidelberg
    108 rdf:type schema:Organisation
    109 Nc49ebc22594a463a9520f0bae5ea36ee schema:affiliation https://www.grid.ac/institutes/grid.450319.a
    110 schema:familyName Asai
    111 schema:givenName Toshihiro
    112 rdf:type schema:Person
    113 Nc520ef4c154949e18e9592dd5400b224 schema:familyName Bebis
    114 schema:givenName George
    115 rdf:type schema:Person
    116 Ncf7a32d0904c421a8189513dfa329578 rdf:first N74286bbdb48f4f32bbf405c895de269b
    117 rdf:rest N834e2dcba0b74a7d886442589524931f
    118 Nd78d0a8b16254636a74b5631f18b36e1 rdf:first Nace87e7db299436d8c933b238e3e908a
    119 rdf:rest Naa1d24aa17394d9aa2134641265f03c9
    120 Ne0bb5ab6965f4c54852a07b64106ab0a rdf:first sg:person.012163223320.75
    121 rdf:rest Nef28fd433dc7430badb9034633704247
    122 Ne3b64f0840e8472096cdd82c45951aa1 schema:name dimensions_id
    123 schema:value pub.1002372300
    124 rdf:type schema:PropertyValue
    125 Ne3c50d60162641e19ba92e8869a7e155 schema:familyName Porikli
    126 schema:givenName Fatih
    127 rdf:type schema:Person
    128 Nea84cb716d5e4c75a2c1ab92c7daf2d1 schema:familyName Koracin
    129 schema:givenName Darko
    130 rdf:type schema:Person
    131 Nef28fd433dc7430badb9034633704247 rdf:first sg:person.016105331403.49
    132 rdf:rest N8f6ec59312e04734ad9fab2a2973931a
    133 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Information and Computing Sciences
    135 rdf:type schema:DefinedTerm
    136 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Artificial Intelligence and Image Processing
    138 rdf:type schema:DefinedTerm
    139 sg:person.010246235477.54 schema:affiliation https://www.grid.ac/institutes/grid.450319.a
    140 schema:familyName Ninomiya
    141 schema:givenName Yoshiki
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010246235477.54
    143 rdf:type schema:Person
    144 sg:person.012163223320.75 schema:affiliation https://www.grid.ac/institutes/grid.450319.a
    145 schema:familyName Kojima
    146 schema:givenName Yoshiko
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012163223320.75
    148 rdf:type schema:Person
    149 sg:person.016105331403.49 schema:affiliation https://www.grid.ac/institutes/grid.450319.a
    150 schema:familyName Naito
    151 schema:givenName Takashi
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016105331403.49
    153 rdf:type schema:Person
    154 sg:person.016347510427.24 schema:affiliation https://www.grid.ac/institutes/grid.450319.a
    155 schema:familyName Yamaguchi
    156 schema:givenName Koichiro
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347510427.24
    158 rdf:type schema:Person
    159 sg:pub.10.1007/3-540-44480-7_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021371683
    160 https://doi.org/10.1007/3-540-44480-7_21
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/bf00128526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004547452
    163 https://doi.org/10.1007/bf00128526
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1016/j.patcog.2005.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049632241
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1109/34.206955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155797
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1109/34.473228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156313
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1109/34.888718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157189
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1109/3dim.2005.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094609897
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1109/3dim.2007.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095439911
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1109/3dpvt.2006.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093773413
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1109/cvpr.2003.1211395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095715705
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1109/ismar.2004.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093173080
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1109/tsmcb.2003.814280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796174
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1117/12.380044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021704428
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.5244/c.2.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099320318
    188 rdf:type schema:CreativeWork
    189 https://www.grid.ac/institutes/grid.450319.a schema:alternateName Toyota Central Research and Development Laboratories (Japan)
    190 schema:name Toyota Central R&D Labs., Inc. Road Environment Recognision Lab., 41-1 Yokomichi, Nagakute, Aichi, Japan
    191 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...