Personalized News Video Recommendation Via Interactive Exploration View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Jianping Fan , Hangzai Luo , Aoying Zhou , Daniel A. Keim

ABSTRACT

In this paper, we have developed an interactive approach to enable personalized news video recommendation. First, multi-modal information channels (audio, video and closed captions) are seamlessly integrated and synchronized to achieve more reliable news topic detection, and the contextual relationships between the news topics are extracted automatically. Second, topic network and hyperbolic visualization are seamlessly integrated to achieve interactive navigation and exploration of large-scale collections of news videos at the topic level, so that users can have a good global overview of large-scale collections of news videos at the first glance. In such interactive topic network navigation and exploration process, the user’s personal background knowledge can be taken into consideration for obtaining the news topics of interest interactively, building up their mental models of news needs precisely and formulating their searches easily by selecting the visible news topics on the screen directly. Our system can further recommend the relevant web news, the new search directions, and the most relevant news videos according to their importance and representativeness scores. Our experiments on large-scale collections of news videos have provided very positive results. More... »

PAGES

380-389

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_37

DOI

http://dx.doi.org/10.1007/978-3-540-89646-3_37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050705553


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dept. of Computer Science, UNC, Charlotte, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Dept. of Computer Science, UNC, Charlotte, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Jianping", 
        "id": "sg:person.015052333145.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015052333145.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Key Lab of Trustworthy Computing, East China Normal University, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Shanghai Key Lab of Trustworthy Computing, East China Normal University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Hangzai", 
        "id": "sg:person.0601465220.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601465220.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Key Lab of Trustworthy Computing, East China Normal University, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Shanghai Key Lab of Trustworthy Computing, East China Normal University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Aoying", 
        "id": "sg:person.015364270471.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015364270471.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Computer Science, University of Konstanz, Konstamz, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Computer Science, University of Konstanz, Konstamz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keim", 
        "givenName": "Daniel A.", 
        "id": "sg:person.0635776571.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "In this paper, we have developed an interactive approach to enable personalized news video recommendation. First, multi-modal information channels (audio, video and closed captions) are seamlessly integrated and synchronized to achieve more reliable news topic detection, and the contextual relationships between the news topics are extracted automatically. Second, topic network and hyperbolic visualization are seamlessly integrated to achieve interactive navigation and exploration of large-scale collections of news videos at the topic level, so that users can have a good global overview of large-scale collections of news videos at the first glance. In such interactive topic network navigation and exploration process, the user\u2019s personal background knowledge can be taken into consideration for obtaining the news topics of interest interactively, building up their mental models of news needs precisely and formulating their searches easily by selecting the visible news topics on the screen directly. Our system can further recommend the relevant web news, the new search directions, and the most relevant news videos according to their importance and representativeness scores. Our experiments on large-scale collections of news videos have provided very positive results.", 
    "editor": [
      {
        "familyName": "Bebis", 
        "givenName": "George", 
        "type": "Person"
      }, 
      {
        "familyName": "Boyle", 
        "givenName": "Richard", 
        "type": "Person"
      }, 
      {
        "familyName": "Parvin", 
        "givenName": "Bahram", 
        "type": "Person"
      }, 
      {
        "familyName": "Koracin", 
        "givenName": "Darko", 
        "type": "Person"
      }, 
      {
        "familyName": "Remagnino", 
        "givenName": "Paolo", 
        "type": "Person"
      }, 
      {
        "familyName": "Porikli", 
        "givenName": "Fatih", 
        "type": "Person"
      }, 
      {
        "familyName": "Peters", 
        "givenName": "J\u00f6rg", 
        "type": "Person"
      }, 
      {
        "familyName": "Klosowski", 
        "givenName": "James", 
        "type": "Person"
      }, 
      {
        "familyName": "Arns", 
        "givenName": "Laura", 
        "type": "Person"
      }, 
      {
        "familyName": "Chun", 
        "givenName": "Yu Ka", 
        "type": "Person"
      }, 
      {
        "familyName": "Rhyne", 
        "givenName": "Theresa-Marie", 
        "type": "Person"
      }, 
      {
        "familyName": "Monroe", 
        "givenName": "Laura", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-89646-3_37", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-89645-6", 
        "978-3-540-89646-3"
      ], 
      "name": "Advances in Visual Computing", 
      "type": "Book"
    }, 
    "keywords": [
      "large-scale collection", 
      "new video", 
      "personal background knowledge", 
      "news topic detection", 
      "hyperbolic visualization", 
      "video recommendation", 
      "interactive navigation", 
      "network navigation", 
      "interactive exploration", 
      "topic detection", 
      "new topic", 
      "web news", 
      "exploration process", 
      "topic level", 
      "interactive approach", 
      "topic network", 
      "video", 
      "representativeness score", 
      "background knowledge", 
      "contextual relationships", 
      "search direction", 
      "information channels", 
      "navigation", 
      "mental models", 
      "new search direction", 
      "users", 
      "collection", 
      "network", 
      "topic", 
      "global overview", 
      "visualization", 
      "exploration", 
      "search", 
      "news", 
      "detection", 
      "system", 
      "first glance", 
      "knowledge", 
      "model", 
      "overview", 
      "experiments", 
      "channels", 
      "glance", 
      "screen", 
      "interest", 
      "recommendations", 
      "process", 
      "results", 
      "direction", 
      "consideration", 
      "positive results", 
      "importance", 
      "relationship", 
      "levels", 
      "scores", 
      "paper", 
      "approach"
    ], 
    "name": "Personalized News Video Recommendation Via Interactive Exploration", 
    "pagination": "380-389", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050705553"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-89646-3_37"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-89646-3_37", 
      "https://app.dimensions.ai/details/publication/pub.1050705553"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_380.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-89646-3_37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-89646-3_37'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      22 PREDICATES      83 URIs      75 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-89646-3_37 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author N947c1954a29c467bbb4e3decf2a24f44
5 schema:datePublished 2008
6 schema:datePublishedReg 2008-01-01
7 schema:description In this paper, we have developed an interactive approach to enable personalized news video recommendation. First, multi-modal information channels (audio, video and closed captions) are seamlessly integrated and synchronized to achieve more reliable news topic detection, and the contextual relationships between the news topics are extracted automatically. Second, topic network and hyperbolic visualization are seamlessly integrated to achieve interactive navigation and exploration of large-scale collections of news videos at the topic level, so that users can have a good global overview of large-scale collections of news videos at the first glance. In such interactive topic network navigation and exploration process, the user’s personal background knowledge can be taken into consideration for obtaining the news topics of interest interactively, building up their mental models of news needs precisely and formulating their searches easily by selecting the visible news topics on the screen directly. Our system can further recommend the relevant web news, the new search directions, and the most relevant news videos according to their importance and representativeness scores. Our experiments on large-scale collections of news videos have provided very positive results.
8 schema:editor N85429416de9b42caa8dd686f4a2e9a7e
9 schema:genre chapter
10 schema:isAccessibleForFree false
11 schema:isPartOf N07ae0923f8b54d248d6ed8d7e7372eae
12 schema:keywords approach
13 background knowledge
14 channels
15 collection
16 consideration
17 contextual relationships
18 detection
19 direction
20 experiments
21 exploration
22 exploration process
23 first glance
24 glance
25 global overview
26 hyperbolic visualization
27 importance
28 information channels
29 interactive approach
30 interactive exploration
31 interactive navigation
32 interest
33 knowledge
34 large-scale collection
35 levels
36 mental models
37 model
38 navigation
39 network
40 network navigation
41 new search direction
42 new topic
43 new video
44 news
45 news topic detection
46 overview
47 paper
48 personal background knowledge
49 positive results
50 process
51 recommendations
52 relationship
53 representativeness score
54 results
55 scores
56 screen
57 search
58 search direction
59 system
60 topic
61 topic detection
62 topic level
63 topic network
64 users
65 video
66 video recommendation
67 visualization
68 web news
69 schema:name Personalized News Video Recommendation Via Interactive Exploration
70 schema:pagination 380-389
71 schema:productId N8d1173d3e8334f06be590690bc05baa7
72 Nac888f23769a49fbae9acb50243c02a3
73 schema:publisher Nf4d18367501c4aa9843137b5a9b3915b
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050705553
75 https://doi.org/10.1007/978-3-540-89646-3_37
76 schema:sdDatePublished 2022-10-01T06:58
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N343248a31bc54d0d92f7c640052809aa
79 schema:url https://doi.org/10.1007/978-3-540-89646-3_37
80 sgo:license sg:explorer/license/
81 sgo:sdDataset chapters
82 rdf:type schema:Chapter
83 N04df2f34f86349649deef47c25109faf rdf:first N2cae3f7370cc494f95d32b4ede175223
84 rdf:rest N8230862c89344e3a94f386f47e3c32d0
85 N07ae0923f8b54d248d6ed8d7e7372eae schema:isbn 978-3-540-89645-6
86 978-3-540-89646-3
87 schema:name Advances in Visual Computing
88 rdf:type schema:Book
89 N1d0c8a6045c04441a02d5876c4441313 rdf:first N758acc71a49748fea8f6f4e98db80cbb
90 rdf:rest N96f2b79bbba84a61931fd6a478e8c5be
91 N21fa58c6079b47adaecef5fcaf2fe5f8 schema:familyName Rhyne
92 schema:givenName Theresa-Marie
93 rdf:type schema:Person
94 N2bc17f1f0313456391575df318ef3854 rdf:first sg:person.0601465220.52
95 rdf:rest Ne52c091746d64040a1cdcaa642d76833
96 N2cae3f7370cc494f95d32b4ede175223 schema:familyName Boyle
97 schema:givenName Richard
98 rdf:type schema:Person
99 N343248a31bc54d0d92f7c640052809aa schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N3af325e3bfd541ddad33548ddc97231e rdf:first Nfd65a1721075442db6a8e56d869fa75b
102 rdf:rest Ne4fcbf5a99514f0699efdb2fba778ea8
103 N5fdd98d0fb1149f2bd80c024c62e4942 rdf:first N8bed4deab64543b0b369f9755e5db60e
104 rdf:rest rdf:nil
105 N758acc71a49748fea8f6f4e98db80cbb schema:familyName Arns
106 schema:givenName Laura
107 rdf:type schema:Person
108 N77943c0d5c9b441ab30ac94f5e0dd4f2 rdf:first sg:person.0635776571.01
109 rdf:rest rdf:nil
110 N78d57fcd7783412abd0766f557b13596 rdf:first N8d875e242be141cc9ef85e6cd964103e
111 rdf:rest N3af325e3bfd541ddad33548ddc97231e
112 N8230862c89344e3a94f386f47e3c32d0 rdf:first Nde2de37a21a142ec87f3024500f78d7f
113 rdf:rest Ne071c4539bcb49279f32a1833ddcb3b9
114 N85429416de9b42caa8dd686f4a2e9a7e rdf:first N8f82e78f10c14f3e9c93d1a8a410e891
115 rdf:rest N04df2f34f86349649deef47c25109faf
116 N8bed4deab64543b0b369f9755e5db60e schema:familyName Monroe
117 schema:givenName Laura
118 rdf:type schema:Person
119 N8d1173d3e8334f06be590690bc05baa7 schema:name dimensions_id
120 schema:value pub.1050705553
121 rdf:type schema:PropertyValue
122 N8d875e242be141cc9ef85e6cd964103e schema:familyName Remagnino
123 schema:givenName Paolo
124 rdf:type schema:Person
125 N8f82e78f10c14f3e9c93d1a8a410e891 schema:familyName Bebis
126 schema:givenName George
127 rdf:type schema:Person
128 N947c1954a29c467bbb4e3decf2a24f44 rdf:first sg:person.015052333145.83
129 rdf:rest N2bc17f1f0313456391575df318ef3854
130 N96f2b79bbba84a61931fd6a478e8c5be rdf:first Ndfb1dcbf5ec7430da62d71fb94dc085b
131 rdf:rest Ncbd88c1b3754421988c197e7819baf56
132 Na1300b99d0e14cb7835ae46fd21f5263 schema:familyName Peters
133 schema:givenName Jörg
134 rdf:type schema:Person
135 Nac888f23769a49fbae9acb50243c02a3 schema:name doi
136 schema:value 10.1007/978-3-540-89646-3_37
137 rdf:type schema:PropertyValue
138 Nb6596e71ba9f45f4a1564f58d11f27d3 rdf:first Nc34ab3b6292f4537962dc6ae942c4fe9
139 rdf:rest N1d0c8a6045c04441a02d5876c4441313
140 Nc34ab3b6292f4537962dc6ae942c4fe9 schema:familyName Klosowski
141 schema:givenName James
142 rdf:type schema:Person
143 Ncbd88c1b3754421988c197e7819baf56 rdf:first N21fa58c6079b47adaecef5fcaf2fe5f8
144 rdf:rest N5fdd98d0fb1149f2bd80c024c62e4942
145 Ncee7b02ac9404424a95637642d25b4a7 schema:familyName Koracin
146 schema:givenName Darko
147 rdf:type schema:Person
148 Nde2de37a21a142ec87f3024500f78d7f schema:familyName Parvin
149 schema:givenName Bahram
150 rdf:type schema:Person
151 Ndfb1dcbf5ec7430da62d71fb94dc085b schema:familyName Chun
152 schema:givenName Yu Ka
153 rdf:type schema:Person
154 Ne071c4539bcb49279f32a1833ddcb3b9 rdf:first Ncee7b02ac9404424a95637642d25b4a7
155 rdf:rest N78d57fcd7783412abd0766f557b13596
156 Ne4fcbf5a99514f0699efdb2fba778ea8 rdf:first Na1300b99d0e14cb7835ae46fd21f5263
157 rdf:rest Nb6596e71ba9f45f4a1564f58d11f27d3
158 Ne52c091746d64040a1cdcaa642d76833 rdf:first sg:person.015364270471.85
159 rdf:rest N77943c0d5c9b441ab30ac94f5e0dd4f2
160 Nf4d18367501c4aa9843137b5a9b3915b schema:name Springer Nature
161 rdf:type schema:Organisation
162 Nfd65a1721075442db6a8e56d869fa75b schema:familyName Porikli
163 schema:givenName Fatih
164 rdf:type schema:Person
165 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
166 schema:name Information and Computing Sciences
167 rdf:type schema:DefinedTerm
168 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
169 schema:name Artificial Intelligence and Image Processing
170 rdf:type schema:DefinedTerm
171 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
172 schema:name Information Systems
173 rdf:type schema:DefinedTerm
174 sg:person.015052333145.83 schema:affiliation grid-institutes:None
175 schema:familyName Fan
176 schema:givenName Jianping
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015052333145.83
178 rdf:type schema:Person
179 sg:person.015364270471.85 schema:affiliation grid-institutes:grid.22069.3f
180 schema:familyName Zhou
181 schema:givenName Aoying
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015364270471.85
183 rdf:type schema:Person
184 sg:person.0601465220.52 schema:affiliation grid-institutes:grid.22069.3f
185 schema:familyName Luo
186 schema:givenName Hangzai
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601465220.52
188 rdf:type schema:Person
189 sg:person.0635776571.01 schema:affiliation grid-institutes:None
190 schema:familyName Keim
191 schema:givenName Daniel A.
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
193 rdf:type schema:Person
194 grid-institutes:None schema:alternateName Dept. of Computer Science, UNC, Charlotte, USA
195 Institute of Computer Science, University of Konstanz, Konstamz, Germany
196 schema:name Dept. of Computer Science, UNC, Charlotte, USA
197 Institute of Computer Science, University of Konstanz, Konstamz, Germany
198 rdf:type schema:Organization
199 grid-institutes:grid.22069.3f schema:alternateName Shanghai Key Lab of Trustworthy Computing, East China Normal University, Shanghai, China
200 schema:name Shanghai Key Lab of Trustworthy Computing, East China Normal University, Shanghai, China
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...