A Data Mapping Method for Steganography and Its Application to Images View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2008

AUTHORS

Hao-tian Wu , Jean-Luc Dugelay , Yiu-ming Cheung

ABSTRACT

In this paper, a new steganographic method that preserves the first-order statistics of the cover is proposed. Suitable for the passive warden scenario, the proposed method is not robust to any change of the stego object. Besides the relative simplicity of both encoding and decoding, high and adjustable information hiding rate can be achieved with our method. In addition, the perceptual distortion caused by data embedding can be easily minimized, such as in the mean squared error criterion. When applied to digital images, the generic method becomes a sort of LSB hiding, namely the LSB + algorithm. To prevent the sample pair analysis attack, the LSB + algorithm is implemented on the selected subsets of pixels to preserve some important high-order statistics as well. The experimental results of the implementation are promising. More... »

PAGES

236-250

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-88961-8_17

DOI

http://dx.doi.org/10.1007/978-3-540-88961-8_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028861381


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Multimedia Communication, Eurecom Institute, Sophia Antipolis, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Multimedia Communication, Eurecom Institute, Sophia Antipolis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Hao-tian", 
        "id": "sg:person.011314467455.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011314467455.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Multimedia Communication, Eurecom Institute, Sophia Antipolis, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Multimedia Communication, Eurecom Institute, Sophia Antipolis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dugelay", 
        "givenName": "Jean-Luc", 
        "id": "sg:person.015053427343.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053427343.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China", 
          "id": "http://www.grid.ac/institutes/grid.221309.b", 
          "name": [
            "Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheung", 
        "givenName": "Yiu-ming", 
        "id": "sg:person.01230035204.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230035204.29"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "In this paper, a new steganographic method that preserves the first-order statistics of the cover is proposed. Suitable for the passive warden scenario, the proposed method is not robust to any change of the stego object. Besides the relative simplicity of both encoding and decoding, high and adjustable information hiding rate can be achieved with our method. In addition, the perceptual distortion caused by data embedding can be easily minimized, such as in the mean squared error criterion. When applied to digital images, the generic method becomes a sort of LSB hiding, namely the LSB\u2009+\u2009 algorithm. To prevent the sample pair analysis attack, the LSB\u2009+\u2009 algorithm is implemented on the selected subsets of pixels to preserve some important high-order statistics as well. The experimental results of the implementation are promising.", 
    "editor": [
      {
        "familyName": "Solanki", 
        "givenName": "Kaushal", 
        "type": "Person"
      }, 
      {
        "familyName": "Sullivan", 
        "givenName": "Kenneth", 
        "type": "Person"
      }, 
      {
        "familyName": "Madhow", 
        "givenName": "Upamanyu", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-88961-8_17", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-88960-1", 
        "978-3-540-88961-8"
      ], 
      "name": "Information Hiding", 
      "type": "Book"
    }, 
    "keywords": [
      "subset of pixels", 
      "stego object", 
      "data embedding", 
      "steganographic method", 
      "data mapping method", 
      "analysis attacks", 
      "new steganographic method", 
      "digital images", 
      "mean squared error criterion", 
      "LSB hiding", 
      "first-order statistics", 
      "squared error criterion", 
      "higher-order statistics", 
      "hiding rate", 
      "generic method", 
      "error criterion", 
      "algorithm", 
      "experimental results", 
      "images", 
      "mapping method", 
      "LSB", 
      "steganography", 
      "hiding", 
      "perceptual distortion", 
      "pixels", 
      "embedding", 
      "objects", 
      "implementation", 
      "attacks", 
      "scenarios", 
      "method", 
      "relative simplicity", 
      "applications", 
      "simplicity", 
      "statistics", 
      "distortion", 
      "subset", 
      "sort", 
      "results", 
      "criteria", 
      "addition", 
      "rate", 
      "cover", 
      "changes", 
      "paper", 
      "passive warden scenario", 
      "warden scenario", 
      "adjustable information hiding rate", 
      "information hiding rate", 
      "sample pair analysis attack", 
      "pair analysis attack", 
      "important high-order statistics"
    ], 
    "name": "A Data Mapping Method for Steganography and Its Application to Images", 
    "pagination": "236-250", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028861381"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-88961-8_17"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-88961-8_17", 
      "https://app.dimensions.ai/details/publication/pub.1028861381"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_126.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-88961-8_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88961-8_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88961-8_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88961-8_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88961-8_17'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      23 PREDICATES      78 URIs      71 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-88961-8_17 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8e958e250ea248a9adb9415a078acbe5
4 schema:datePublished 2008
5 schema:datePublishedReg 2008-01-01
6 schema:description In this paper, a new steganographic method that preserves the first-order statistics of the cover is proposed. Suitable for the passive warden scenario, the proposed method is not robust to any change of the stego object. Besides the relative simplicity of both encoding and decoding, high and adjustable information hiding rate can be achieved with our method. In addition, the perceptual distortion caused by data embedding can be easily minimized, such as in the mean squared error criterion. When applied to digital images, the generic method becomes a sort of LSB hiding, namely the LSB +  algorithm. To prevent the sample pair analysis attack, the LSB +  algorithm is implemented on the selected subsets of pixels to preserve some important high-order statistics as well. The experimental results of the implementation are promising.
7 schema:editor N9a45dbbd64fe4e6ca07de8d17c27e4b4
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N6d0deee9f46141d7b8a2f8080902fff2
12 schema:keywords LSB
13 LSB hiding
14 addition
15 adjustable information hiding rate
16 algorithm
17 analysis attacks
18 applications
19 attacks
20 changes
21 cover
22 criteria
23 data embedding
24 data mapping method
25 digital images
26 distortion
27 embedding
28 error criterion
29 experimental results
30 first-order statistics
31 generic method
32 hiding
33 hiding rate
34 higher-order statistics
35 images
36 implementation
37 important high-order statistics
38 information hiding rate
39 mapping method
40 mean squared error criterion
41 method
42 new steganographic method
43 objects
44 pair analysis attack
45 paper
46 passive warden scenario
47 perceptual distortion
48 pixels
49 rate
50 relative simplicity
51 results
52 sample pair analysis attack
53 scenarios
54 simplicity
55 sort
56 squared error criterion
57 statistics
58 steganographic method
59 steganography
60 stego object
61 subset
62 subset of pixels
63 warden scenario
64 schema:name A Data Mapping Method for Steganography and Its Application to Images
65 schema:pagination 236-250
66 schema:productId N19e9049528f449ad9270d74291da6cbc
67 N7ac1b45244bb4cbba6ff1fbaa4631a8e
68 schema:publisher Neb13c03d7aff422d8d826b464077d2e4
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028861381
70 https://doi.org/10.1007/978-3-540-88961-8_17
71 schema:sdDatePublished 2022-01-01T19:07
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N3d466ad611a04f1c80d3d768f2345fef
74 schema:url https://doi.org/10.1007/978-3-540-88961-8_17
75 sgo:license sg:explorer/license/
76 sgo:sdDataset chapters
77 rdf:type schema:Chapter
78 N0152220b88c94b588a0d87ab1d5717aa schema:familyName Madhow
79 schema:givenName Upamanyu
80 rdf:type schema:Person
81 N19e9049528f449ad9270d74291da6cbc schema:name doi
82 schema:value 10.1007/978-3-540-88961-8_17
83 rdf:type schema:PropertyValue
84 N203533c0ff5141ebadb669b530359550 rdf:first N0152220b88c94b588a0d87ab1d5717aa
85 rdf:rest rdf:nil
86 N3d466ad611a04f1c80d3d768f2345fef schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N655d219734594ec8a8f292fe0be6af3e schema:familyName Solanki
89 schema:givenName Kaushal
90 rdf:type schema:Person
91 N6d0deee9f46141d7b8a2f8080902fff2 schema:isbn 978-3-540-88960-1
92 978-3-540-88961-8
93 schema:name Information Hiding
94 rdf:type schema:Book
95 N7ac1b45244bb4cbba6ff1fbaa4631a8e schema:name dimensions_id
96 schema:value pub.1028861381
97 rdf:type schema:PropertyValue
98 N8e958e250ea248a9adb9415a078acbe5 rdf:first sg:person.011314467455.63
99 rdf:rest Nfe98362f775a4d27b2f87e7c64ceed31
100 N9a45dbbd64fe4e6ca07de8d17c27e4b4 rdf:first N655d219734594ec8a8f292fe0be6af3e
101 rdf:rest Nda4d94d2f6da47078e004fcff128f013
102 Na0ed49f1ba1445ba9dbef99a187fe672 rdf:first sg:person.01230035204.29
103 rdf:rest rdf:nil
104 Nda4d94d2f6da47078e004fcff128f013 rdf:first Ne894d254550245979fcd3dd1bde3df98
105 rdf:rest N203533c0ff5141ebadb669b530359550
106 Ne894d254550245979fcd3dd1bde3df98 schema:familyName Sullivan
107 schema:givenName Kenneth
108 rdf:type schema:Person
109 Neb13c03d7aff422d8d826b464077d2e4 schema:name Springer Nature
110 rdf:type schema:Organisation
111 Nfe98362f775a4d27b2f87e7c64ceed31 rdf:first sg:person.015053427343.37
112 rdf:rest Na0ed49f1ba1445ba9dbef99a187fe672
113 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
114 schema:name Information and Computing Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
117 schema:name Artificial Intelligence and Image Processing
118 rdf:type schema:DefinedTerm
119 sg:person.011314467455.63 schema:affiliation grid-institutes:None
120 schema:familyName Wu
121 schema:givenName Hao-tian
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011314467455.63
123 rdf:type schema:Person
124 sg:person.01230035204.29 schema:affiliation grid-institutes:grid.221309.b
125 schema:familyName Cheung
126 schema:givenName Yiu-ming
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230035204.29
128 rdf:type schema:Person
129 sg:person.015053427343.37 schema:affiliation grid-institutes:None
130 schema:familyName Dugelay
131 schema:givenName Jean-Luc
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053427343.37
133 rdf:type schema:Person
134 grid-institutes:None schema:alternateName Department of Multimedia Communication, Eurecom Institute, Sophia Antipolis, France
135 schema:name Department of Multimedia Communication, Eurecom Institute, Sophia Antipolis, France
136 rdf:type schema:Organization
137 grid-institutes:grid.221309.b schema:alternateName Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
138 schema:name Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...