GeoS: Geodesic Image Segmentation View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2008

AUTHORS

Antonio Criminisi , Toby Sharp , Andrew Blake

ABSTRACT

This paper presents GeoS, a new algorithm for the efficient segmentation of n-dimensional image and video data. The segmentation problem is cast as approximate energy minimization in a conditional random field. A new, parallel filtering operator built upon efficient geodesic distance computation is used to propose a set of spatially smooth, contrast-sensitive segmentation hypotheses. An economical search algorithm finds the solution with minimum energy within a sensible and highly restricted subset of all possible labellings. Advantages include: i) computational efficiency with high segmentation accuracy; ii) the ability to estimate an approximation to the posterior over segmentations; iii) the ability to handle generally complex energy models. Comparison with max-flow indicates up to 60 times greater computational efficiency as well as greater memory efficiency. GeoS is validated quantitatively and qualitatively by thorough comparative experiments on existing and novel ground-truth data. Numerous results on interactive and automatic segmentation of photographs, video and volumetric medical image data are presented. More... »

PAGES

99-112

Book

TITLE

Computer Vision – ECCV 2008

ISBN

978-3-540-88681-5
978-3-540-88682-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-88682-2_9

DOI

http://dx.doi.org/10.1007/978-3-540-88682-2_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047173815


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Microsoft Research (United Kingdom)", 
          "id": "https://www.grid.ac/institutes/grid.24488.32", 
          "name": [
            "Microsoft Research, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Criminisi", 
        "givenName": "Antonio", 
        "id": "sg:person.0674563210.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674563210.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microsoft Research (United Kingdom)", 
          "id": "https://www.grid.ac/institutes/grid.24488.32", 
          "name": [
            "Microsoft Research, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sharp", 
        "givenName": "Toby", 
        "id": "sg:person.0606300515.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606300515.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microsoft Research (United Kingdom)", 
          "id": "https://www.grid.ac/institutes/grid.24488.32", 
          "name": [
            "Microsoft Research, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blake", 
        "givenName": "Andrew", 
        "id": "sg:person.014544741617.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014544741617.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-47977-5_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004266762", 
          "https://doi.org/10.1007/3-540-47977-5_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8655(96)00010-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008511207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24670-1_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017586951", 
          "https://doi.org/10.1007/978-3-540-24670-1_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24670-1_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017586951", 
          "https://doi.org/10.1007/978-3-540-24670-1_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1322432.1322434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020263486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11744047_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021485887", 
          "https://doi.org/10.1007/11744047_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11744047_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021485887", 
          "https://doi.org/10.1007/11744047_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1186562.1015720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022236987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2005.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031270895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2005.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031270895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0734-189x(86)80047-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039550237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11744047_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040981648", 
          "https://doi.org/10.1007/11744047_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11744047_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040981648", 
          "https://doi.org/10.1007/11744047_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.864231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2007.1128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2006.56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061812696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144598347059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ada478319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091571423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2007.4408907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093220891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2007.4408931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093653145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2007.383095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093678308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2006.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093699646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2006.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093911769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2006.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093986227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2007.383203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094331601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2007.4408927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094582829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2007.4408910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094779115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2001.937505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095383001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470316726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109496248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109496248", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "This paper presents GeoS, a new algorithm for the efficient segmentation of n-dimensional image and video data. The segmentation problem is cast as approximate energy minimization in a conditional random field. A new, parallel filtering operator built upon efficient geodesic distance computation is used to propose a set of spatially smooth, contrast-sensitive segmentation hypotheses. An economical search algorithm finds the solution with minimum energy within a sensible and highly restricted subset of all possible labellings. Advantages include: i) computational efficiency with high segmentation accuracy; ii) the ability to estimate an approximation to the posterior over segmentations; iii) the ability to handle generally complex energy models. Comparison with max-flow indicates up to 60 times greater computational efficiency as well as greater memory efficiency. GeoS is validated quantitatively and qualitatively by thorough comparative experiments on existing and novel ground-truth data. Numerous results on interactive and automatic segmentation of photographs, video and volumetric medical image data are presented.", 
    "editor": [
      {
        "familyName": "Forsyth", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "familyName": "Torr", 
        "givenName": "Philip", 
        "type": "Person"
      }, 
      {
        "familyName": "Zisserman", 
        "givenName": "Andrew", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-88682-2_9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-88681-5", 
        "978-3-540-88682-2"
      ], 
      "name": "Computer Vision \u2013 ECCV 2008", 
      "type": "Book"
    }, 
    "name": "GeoS: Geodesic Image Segmentation", 
    "pagination": "99-112", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-88682-2_9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e0b82b1dfcd11baa74122c1af068ca51db0f17428c2f453e1151b7e499b52e08"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047173815"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-88682-2_9", 
      "https://app.dimensions.ai/details/publication/pub.1047173815"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T06:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77579_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-88682-2_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88682-2_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88682-2_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88682-2_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88682-2_9'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      23 PREDICATES      53 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-88682-2_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4e5160bb68ad4ca4860b0536d6b8e562
4 schema:citation sg:pub.10.1007/11744047_2
5 sg:pub.10.1007/11744047_3
6 sg:pub.10.1007/3-540-47977-5_6
7 sg:pub.10.1007/978-3-540-24670-1_33
8 https://app.dimensions.ai/details/publication/pub.1109496248
9 https://doi.org/10.1002/9780470316726
10 https://doi.org/10.1016/0167-8655(96)00010-4
11 https://doi.org/10.1016/j.jcp.2005.08.005
12 https://doi.org/10.1016/s0734-189x(86)80047-0
13 https://doi.org/10.1109/cvpr.2006.47
14 https://doi.org/10.1109/cvpr.2006.69
15 https://doi.org/10.1109/cvpr.2006.91
16 https://doi.org/10.1109/cvpr.2007.383095
17 https://doi.org/10.1109/cvpr.2007.383203
18 https://doi.org/10.1109/iccv.2001.937505
19 https://doi.org/10.1109/iccv.2007.4408907
20 https://doi.org/10.1109/iccv.2007.4408910
21 https://doi.org/10.1109/iccv.2007.4408927
22 https://doi.org/10.1109/iccv.2007.4408931
23 https://doi.org/10.1109/tip.2005.864231
24 https://doi.org/10.1109/tpami.2007.1128
25 https://doi.org/10.1109/tvcg.2006.56
26 https://doi.org/10.1137/s0036144598347059
27 https://doi.org/10.1145/1186562.1015720
28 https://doi.org/10.1145/1322432.1322434
29 https://doi.org/10.21236/ada478319
30 schema:datePublished 2008
31 schema:datePublishedReg 2008-01-01
32 schema:description This paper presents GeoS, a new algorithm for the efficient segmentation of n-dimensional image and video data. The segmentation problem is cast as approximate energy minimization in a conditional random field. A new, parallel filtering operator built upon efficient geodesic distance computation is used to propose a set of spatially smooth, contrast-sensitive segmentation hypotheses. An economical search algorithm finds the solution with minimum energy within a sensible and highly restricted subset of all possible labellings. Advantages include: i) computational efficiency with high segmentation accuracy; ii) the ability to estimate an approximation to the posterior over segmentations; iii) the ability to handle generally complex energy models. Comparison with max-flow indicates up to 60 times greater computational efficiency as well as greater memory efficiency. GeoS is validated quantitatively and qualitatively by thorough comparative experiments on existing and novel ground-truth data. Numerous results on interactive and automatic segmentation of photographs, video and volumetric medical image data are presented.
33 schema:editor N75310b8e1ccd4c1ebd2c8686e05ef8dc
34 schema:genre chapter
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf Nd0b4025f296c496c92ed4002fe4e42e6
38 schema:name GeoS: Geodesic Image Segmentation
39 schema:pagination 99-112
40 schema:productId N59f4d07a00754d4ba78b7a4006904c12
41 Naa52faf3b38548d68464990747468203
42 Nf340d5f8deb94ed8ad616e60a9b92801
43 schema:publisher N6a73dc78b3f640fcb9127846397dd33c
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047173815
45 https://doi.org/10.1007/978-3-540-88682-2_9
46 schema:sdDatePublished 2019-04-16T06:11
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nff3e5c8704124ac0b37f4eacf90afb2a
49 schema:url https://link.springer.com/10.1007%2F978-3-540-88682-2_9
50 sgo:license sg:explorer/license/
51 sgo:sdDataset chapters
52 rdf:type schema:Chapter
53 N29401191832c431fbf7e74bd068bc92f schema:familyName Torr
54 schema:givenName Philip
55 rdf:type schema:Person
56 N4a1384d6c6104baf917bdd12b61b85c5 schema:familyName Zisserman
57 schema:givenName Andrew
58 rdf:type schema:Person
59 N4e5160bb68ad4ca4860b0536d6b8e562 rdf:first sg:person.0674563210.87
60 rdf:rest N6f07340acefd474b8ab0874f920cf1c1
61 N59f4d07a00754d4ba78b7a4006904c12 schema:name doi
62 schema:value 10.1007/978-3-540-88682-2_9
63 rdf:type schema:PropertyValue
64 N64f4bf148d1c45c2a849c502d043249e schema:familyName Forsyth
65 schema:givenName David
66 rdf:type schema:Person
67 N6a73dc78b3f640fcb9127846397dd33c schema:location Berlin, Heidelberg
68 schema:name Springer Berlin Heidelberg
69 rdf:type schema:Organisation
70 N6f07340acefd474b8ab0874f920cf1c1 rdf:first sg:person.0606300515.94
71 rdf:rest N833a65f7289c469b9a81ae1c64603ef8
72 N75310b8e1ccd4c1ebd2c8686e05ef8dc rdf:first N64f4bf148d1c45c2a849c502d043249e
73 rdf:rest N8a8ae4a5af3d4091bc549122195c62c1
74 N833a65f7289c469b9a81ae1c64603ef8 rdf:first sg:person.014544741617.06
75 rdf:rest rdf:nil
76 N8a8ae4a5af3d4091bc549122195c62c1 rdf:first N29401191832c431fbf7e74bd068bc92f
77 rdf:rest Nc1a1252f9ca240dfa5563e480c20fee7
78 Naa52faf3b38548d68464990747468203 schema:name dimensions_id
79 schema:value pub.1047173815
80 rdf:type schema:PropertyValue
81 Nc1a1252f9ca240dfa5563e480c20fee7 rdf:first N4a1384d6c6104baf917bdd12b61b85c5
82 rdf:rest rdf:nil
83 Nd0b4025f296c496c92ed4002fe4e42e6 schema:isbn 978-3-540-88681-5
84 978-3-540-88682-2
85 schema:name Computer Vision – ECCV 2008
86 rdf:type schema:Book
87 Nf340d5f8deb94ed8ad616e60a9b92801 schema:name readcube_id
88 schema:value e0b82b1dfcd11baa74122c1af068ca51db0f17428c2f453e1151b7e499b52e08
89 rdf:type schema:PropertyValue
90 Nff3e5c8704124ac0b37f4eacf90afb2a schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
93 schema:name Information and Computing Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
96 schema:name Artificial Intelligence and Image Processing
97 rdf:type schema:DefinedTerm
98 sg:person.014544741617.06 schema:affiliation https://www.grid.ac/institutes/grid.24488.32
99 schema:familyName Blake
100 schema:givenName Andrew
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014544741617.06
102 rdf:type schema:Person
103 sg:person.0606300515.94 schema:affiliation https://www.grid.ac/institutes/grid.24488.32
104 schema:familyName Sharp
105 schema:givenName Toby
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606300515.94
107 rdf:type schema:Person
108 sg:person.0674563210.87 schema:affiliation https://www.grid.ac/institutes/grid.24488.32
109 schema:familyName Criminisi
110 schema:givenName Antonio
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674563210.87
112 rdf:type schema:Person
113 sg:pub.10.1007/11744047_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021485887
114 https://doi.org/10.1007/11744047_2
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/11744047_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040981648
117 https://doi.org/10.1007/11744047_3
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/3-540-47977-5_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004266762
120 https://doi.org/10.1007/3-540-47977-5_6
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/978-3-540-24670-1_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017586951
123 https://doi.org/10.1007/978-3-540-24670-1_33
124 rdf:type schema:CreativeWork
125 https://app.dimensions.ai/details/publication/pub.1109496248 schema:CreativeWork
126 https://doi.org/10.1002/9780470316726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109496248
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0167-8655(96)00010-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008511207
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.jcp.2005.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031270895
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0734-189x(86)80047-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039550237
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/cvpr.2006.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093911769
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/cvpr.2006.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093986227
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/cvpr.2006.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093699646
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/cvpr.2007.383095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093678308
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/cvpr.2007.383203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094331601
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/iccv.2001.937505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095383001
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/iccv.2007.4408907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093220891
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/iccv.2007.4408910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094779115
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/iccv.2007.4408927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094582829
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/iccv.2007.4408931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093653145
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/tip.2005.864231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641383
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/tpami.2007.1128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743253
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/tvcg.2006.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812696
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1137/s0036144598347059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877998
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1145/1186562.1015720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022236987
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1145/1322432.1322434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020263486
165 rdf:type schema:CreativeWork
166 https://doi.org/10.21236/ada478319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091571423
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.24488.32 schema:alternateName Microsoft Research (United Kingdom)
169 schema:name Microsoft Research, Cambridge, UK
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...