Bringing Topology-Based Flow Visualization to the Application Domain View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2009

AUTHORS

Robert S. Laramee , Guoning Chen , Monika Jankun-Kelly , Eugene Zhang , David Thompson

ABSTRACT

The visualization community is currently witnessing strong advances in topology-based flow visualization research. Numerous algorithms have been pro posed since the introduction of this class of approaches in 1989. Yet despite the many advances in the field, topology-based flow visualization methods have, until now, failed to penetrate industry. Application domain experts are still, in general, not using topological analysis and visualization in daily practice. We present a range of state-of-the art topology-based flow visualization methods such as vortex core line extraction, singularity and separatrix extraction, and periodic orbit extraction techniques, and apply them to real-world data sets. Applications include the visual ization of engine simulation data such as in-cylinder flow, cooling jacket flow, as well as flow around a spinning missile. The novel application of periodic orbit extraction to the boundary surface of a cooling jacket is presented. Based on our experiences, we then describe what we believe needs to be done in order to bring topological flow visualization methods to industry-level software applications. We believe this discussion will inspire useful directions for future work. More... »

PAGES

161-176

References to SciGraph publications

Book

TITLE

Topology-Based Methods in Visualization II

ISBN

978-3-540-88605-1
978-3-540-88606-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-88606-8_12

DOI

http://dx.doi.org/10.1007/978-3-540-88606-8_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040868886


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Swansea University", 
          "id": "https://www.grid.ac/institutes/grid.4827.9", 
          "name": [
            "Department of Computer Science, Swansea University, Wales, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laramee", 
        "givenName": "Robert S.", 
        "id": "sg:person.013747544527.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747544527.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oregon State University", 
          "id": "https://www.grid.ac/institutes/grid.4391.f", 
          "name": [
            "Oregon State University, Corvallis, Oregon"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Guoning", 
        "id": "sg:person.0662364174.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662364174.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mississippi State University", 
          "id": "https://www.grid.ac/institutes/grid.260120.7", 
          "name": [
            "Mississippi State University, Starkville, Mississippi"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jankun-Kelly", 
        "givenName": "Monika", 
        "id": "sg:person.016061770517.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016061770517.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oregon State University", 
          "id": "https://www.grid.ac/institutes/grid.4391.f", 
          "name": [
            "Oregon State University, Corvallis, Oregon"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Eugene", 
        "id": "sg:person.0717334520.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717334520.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mississippi State University", 
          "id": "https://www.grid.ac/institutes/grid.260120.7", 
          "name": [
            "Mississippi State University, Starkville, Mississippi"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thompson", 
        "givenName": "David", 
        "id": "sg:person.01133453663.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133453663.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-70823-0_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001549087", 
          "https://doi.org/10.1007/978-3-540-70823-0_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-70823-0_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001549087", 
          "https://doi.org/10.1007/978-3-540-70823-0_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.11324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002784932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0097-8493(00)00028-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018093255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1183287.1183290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021780816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0097-8493(00)00029-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024700951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-6803-5_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031661606", 
          "https://doi.org/10.1007/978-3-7091-6803-5_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-8659.00625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031804269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.9197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039836676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.25224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041060362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/634067.634258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048251139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112095000462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053768453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2.35197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061105392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2945.468404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2945.694953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2945.773805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2945.928168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061146363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/38.689668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061164089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/38.79452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061164195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcg.2004.20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061391346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2004.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061812486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2006.201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061812669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2007.1021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061812750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.1990.146359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086271679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2004.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094344233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.2002.1183789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095213945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.1998.745296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095402308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.1999.809907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095517208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/visual.1998.745297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095534536"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "The visualization community is currently witnessing strong advances in topology-based flow visualization research. Numerous algorithms have been pro posed since the introduction of this class of approaches in 1989. Yet despite the many advances in the field, topology-based flow visualization methods have, until now, failed to penetrate industry. Application domain experts are still, in general, not using topological analysis and visualization in daily practice. We present a range of state-of-the art topology-based flow visualization methods such as vortex core line extraction, singularity and separatrix extraction, and periodic orbit extraction techniques, and apply them to real-world data sets. Applications include the visual ization of engine simulation data such as in-cylinder flow, cooling jacket flow, as well as flow around a spinning missile. The novel application of periodic orbit extraction to the boundary surface of a cooling jacket is presented. Based on our experiences, we then describe what we believe needs to be done in order to bring topological flow visualization methods to industry-level software applications. We believe this discussion will inspire useful directions for future work.", 
    "editor": [
      {
        "familyName": "Hege", 
        "givenName": "Hans-Christian", 
        "type": "Person"
      }, 
      {
        "familyName": "Polthier", 
        "givenName": "Konrad", 
        "type": "Person"
      }, 
      {
        "familyName": "Scheuermann", 
        "givenName": "Gerik", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-88606-8_12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-88605-1", 
        "978-3-540-88606-8"
      ], 
      "name": "Topology-Based Methods in Visualization II", 
      "type": "Book"
    }, 
    "name": "Bringing Topology-Based Flow Visualization to the Application Domain", 
    "pagination": "161-176", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-88606-8_12"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c2af2af159209a3ef0bd05de39c2932051826c225480e88c17b9421cd292add2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040868886"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-88606-8_12", 
      "https://app.dimensions.ai/details/publication/pub.1040868886"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T06:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43229_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-88606-8_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88606-8_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88606-8_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88606-8_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88606-8_12'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      23 PREDICATES      55 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-88606-8_12 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf3641c9a92064fda80fac168636718d4
4 schema:citation sg:pub.10.1007/978-3-540-70823-0_9
5 sg:pub.10.1007/978-3-7091-6803-5_5
6 https://doi.org/10.1016/s0097-8493(00)00028-5
7 https://doi.org/10.1016/s0097-8493(00)00029-7
8 https://doi.org/10.1017/s0022112095000462
9 https://doi.org/10.1109/2.35197
10 https://doi.org/10.1109/2945.468404
11 https://doi.org/10.1109/2945.694953
12 https://doi.org/10.1109/2945.773805
13 https://doi.org/10.1109/2945.928168
14 https://doi.org/10.1109/38.689668
15 https://doi.org/10.1109/38.79452
16 https://doi.org/10.1109/mcg.2004.20
17 https://doi.org/10.1109/tvcg.2004.47
18 https://doi.org/10.1109/tvcg.2006.201
19 https://doi.org/10.1109/tvcg.2007.1021
20 https://doi.org/10.1109/visual.1990.146359
21 https://doi.org/10.1109/visual.1998.745296
22 https://doi.org/10.1109/visual.1998.745297
23 https://doi.org/10.1109/visual.1999.809907
24 https://doi.org/10.1109/visual.2002.1183789
25 https://doi.org/10.1109/visual.2004.59
26 https://doi.org/10.1111/1467-8659.00625
27 https://doi.org/10.1145/1183287.1183290
28 https://doi.org/10.1145/634067.634258
29 https://doi.org/10.2514/1.9197
30 https://doi.org/10.2514/3.11324
31 https://doi.org/10.2514/3.25224
32 schema:datePublished 2009
33 schema:datePublishedReg 2009-01-01
34 schema:description The visualization community is currently witnessing strong advances in topology-based flow visualization research. Numerous algorithms have been pro posed since the introduction of this class of approaches in 1989. Yet despite the many advances in the field, topology-based flow visualization methods have, until now, failed to penetrate industry. Application domain experts are still, in general, not using topological analysis and visualization in daily practice. We present a range of state-of-the art topology-based flow visualization methods such as vortex core line extraction, singularity and separatrix extraction, and periodic orbit extraction techniques, and apply them to real-world data sets. Applications include the visual ization of engine simulation data such as in-cylinder flow, cooling jacket flow, as well as flow around a spinning missile. The novel application of periodic orbit extraction to the boundary surface of a cooling jacket is presented. Based on our experiences, we then describe what we believe needs to be done in order to bring topological flow visualization methods to industry-level software applications. We believe this discussion will inspire useful directions for future work.
35 schema:editor N029752c039a24c00b097747279858165
36 schema:genre chapter
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N9e8b0a34e2c6455bbe760a31f206212a
40 schema:name Bringing Topology-Based Flow Visualization to the Application Domain
41 schema:pagination 161-176
42 schema:productId N6de48da7fd4742ada0c7d69afe74ea7e
43 N8d684e9744ec442faa12f9203fbdb6fa
44 Nf6de800d9ea1448a83e6e6b7438c2be1
45 schema:publisher Ndf1071fd6766481793f3cd9cf6540966
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040868886
47 https://doi.org/10.1007/978-3-540-88606-8_12
48 schema:sdDatePublished 2019-04-16T06:13
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N261ce4a8b3604a6b8bd612b282005d6a
51 schema:url https://link.springer.com/10.1007%2F978-3-540-88606-8_12
52 sgo:license sg:explorer/license/
53 sgo:sdDataset chapters
54 rdf:type schema:Chapter
55 N029752c039a24c00b097747279858165 rdf:first Nd0ed2f53b94f4dd6b7a8af15b2a349ce
56 rdf:rest N8f6860c733f94cda8b468ed855486ed5
57 N0d635589af944f74bb31f08ea8653521 rdf:first sg:person.01133453663.35
58 rdf:rest rdf:nil
59 N261ce4a8b3604a6b8bd612b282005d6a schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N3211aad83b5348e68caead7f068f6854 rdf:first sg:person.0717334520.94
62 rdf:rest N0d635589af944f74bb31f08ea8653521
63 N4c550cfda865471185bbba0ee3a6446c rdf:first N7ed86cde4c1b4cdca420f65275ff111c
64 rdf:rest rdf:nil
65 N56338572442e4df5a63b546a79f8fa11 rdf:first sg:person.0662364174.05
66 rdf:rest Nc39968ba76124e6180ac71e33a978949
67 N6de48da7fd4742ada0c7d69afe74ea7e schema:name dimensions_id
68 schema:value pub.1040868886
69 rdf:type schema:PropertyValue
70 N7ed86cde4c1b4cdca420f65275ff111c schema:familyName Scheuermann
71 schema:givenName Gerik
72 rdf:type schema:Person
73 N8d684e9744ec442faa12f9203fbdb6fa schema:name readcube_id
74 schema:value c2af2af159209a3ef0bd05de39c2932051826c225480e88c17b9421cd292add2
75 rdf:type schema:PropertyValue
76 N8f6860c733f94cda8b468ed855486ed5 rdf:first Nfa1b0e2d22694fe3ab3a30658f03c12f
77 rdf:rest N4c550cfda865471185bbba0ee3a6446c
78 N9e8b0a34e2c6455bbe760a31f206212a schema:isbn 978-3-540-88605-1
79 978-3-540-88606-8
80 schema:name Topology-Based Methods in Visualization II
81 rdf:type schema:Book
82 Nc39968ba76124e6180ac71e33a978949 rdf:first sg:person.016061770517.23
83 rdf:rest N3211aad83b5348e68caead7f068f6854
84 Nd0ed2f53b94f4dd6b7a8af15b2a349ce schema:familyName Hege
85 schema:givenName Hans-Christian
86 rdf:type schema:Person
87 Ndf1071fd6766481793f3cd9cf6540966 schema:location Berlin, Heidelberg
88 schema:name Springer Berlin Heidelberg
89 rdf:type schema:Organisation
90 Nf3641c9a92064fda80fac168636718d4 rdf:first sg:person.013747544527.26
91 rdf:rest N56338572442e4df5a63b546a79f8fa11
92 Nf6de800d9ea1448a83e6e6b7438c2be1 schema:name doi
93 schema:value 10.1007/978-3-540-88606-8_12
94 rdf:type schema:PropertyValue
95 Nfa1b0e2d22694fe3ab3a30658f03c12f schema:familyName Polthier
96 schema:givenName Konrad
97 rdf:type schema:Person
98 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
99 schema:name Information and Computing Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
102 schema:name Artificial Intelligence and Image Processing
103 rdf:type schema:DefinedTerm
104 sg:person.01133453663.35 schema:affiliation https://www.grid.ac/institutes/grid.260120.7
105 schema:familyName Thompson
106 schema:givenName David
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133453663.35
108 rdf:type schema:Person
109 sg:person.013747544527.26 schema:affiliation https://www.grid.ac/institutes/grid.4827.9
110 schema:familyName Laramee
111 schema:givenName Robert S.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747544527.26
113 rdf:type schema:Person
114 sg:person.016061770517.23 schema:affiliation https://www.grid.ac/institutes/grid.260120.7
115 schema:familyName Jankun-Kelly
116 schema:givenName Monika
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016061770517.23
118 rdf:type schema:Person
119 sg:person.0662364174.05 schema:affiliation https://www.grid.ac/institutes/grid.4391.f
120 schema:familyName Chen
121 schema:givenName Guoning
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662364174.05
123 rdf:type schema:Person
124 sg:person.0717334520.94 schema:affiliation https://www.grid.ac/institutes/grid.4391.f
125 schema:familyName Zhang
126 schema:givenName Eugene
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717334520.94
128 rdf:type schema:Person
129 sg:pub.10.1007/978-3-540-70823-0_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001549087
130 https://doi.org/10.1007/978-3-540-70823-0_9
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/978-3-7091-6803-5_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031661606
133 https://doi.org/10.1007/978-3-7091-6803-5_5
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0097-8493(00)00028-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018093255
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0097-8493(00)00029-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024700951
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1017/s0022112095000462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053768453
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/2.35197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061105392
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/2945.468404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146207
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/2945.694953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146284
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/2945.773805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146311
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/2945.928168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061146363
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/38.689668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061164089
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/38.79452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061164195
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/mcg.2004.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061391346
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/tvcg.2004.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812486
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/tvcg.2006.201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812669
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/tvcg.2007.1021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061812750
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/visual.1990.146359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086271679
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/visual.1998.745296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095402308
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/visual.1998.745297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095534536
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/visual.1999.809907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095517208
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/visual.2002.1183789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095213945
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/visual.2004.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094344233
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1111/1467-8659.00625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031804269
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1145/1183287.1183290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021780816
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1145/634067.634258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048251139
180 rdf:type schema:CreativeWork
181 https://doi.org/10.2514/1.9197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039836676
182 rdf:type schema:CreativeWork
183 https://doi.org/10.2514/3.11324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002784932
184 rdf:type schema:CreativeWork
185 https://doi.org/10.2514/3.25224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041060362
186 rdf:type schema:CreativeWork
187 https://www.grid.ac/institutes/grid.260120.7 schema:alternateName Mississippi State University
188 schema:name Mississippi State University, Starkville, Mississippi
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.4391.f schema:alternateName Oregon State University
191 schema:name Oregon State University, Corvallis, Oregon
192 rdf:type schema:Organization
193 https://www.grid.ac/institutes/grid.4827.9 schema:alternateName Swansea University
194 schema:name Department of Computer Science, Swansea University, Wales, UK
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...