Visual Analytics: Combining Automated Discovery with Interactive Visualizations View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2008

AUTHORS

Daniel A. Keim , Florian Mansmann , Daniela Oelke , Hartmut Ziegler

ABSTRACT

In numerous application areas fast growing data sets develop with ever higher complexity and dynamics. A central challenge is to filter the substantial information and to communicate it to humans in an appropriate way. Approaches, which work either on a purely analytical or on a purely visual level, do not sufficiently help due to the dynamics and complexity of the underlying processes or due to a situation with intelligent opponents. Only a combination of data analysis and visualization techniques make an effective access to the otherwise unmanageably complex data sets possible.Visual analysis techniques extend the perceptual and cognitive abilities of humans with automatic data analysis techniques, and help to gain insights for optimizing and steering complicated processes. In the paper, we introduce the basic idea of Visual Analytics, explain how automated discovery and visual analysis methods can be combined, discuss the main challenges of Visual Analytics, and show that combining automatic and visual analysis is the only chance to capture the complex, changing characteristics of the data. To further explain the Visual Analytics process, we provide examples from the area of document analysis. More... »

PAGES

2-14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-88411-8_2

DOI

http://dx.doi.org/10.1007/978-3-540-88411-8_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028894451


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keim", 
        "givenName": "Daniel A.", 
        "id": "sg:person.0635776571.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansmann", 
        "givenName": "Florian", 
        "id": "sg:person.0646626305.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646626305.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oelke", 
        "givenName": "Daniela", 
        "id": "sg:person.07667765141.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07667765141.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ziegler", 
        "givenName": "Hartmut", 
        "id": "sg:person.015015526443.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015015526443.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "In numerous application areas fast growing data sets develop with ever higher complexity and dynamics. A central challenge is to filter the substantial information and to communicate it to humans in an appropriate way. Approaches, which work either on a purely analytical or on a purely visual level, do not sufficiently help due to the dynamics and complexity of the underlying processes or due to a situation with intelligent opponents. Only a combination of data analysis and visualization techniques make an effective access to the otherwise unmanageably complex data sets possible.Visual analysis techniques extend the perceptual and cognitive abilities of humans with automatic data analysis techniques, and help to gain insights for optimizing and steering complicated processes. In the paper, we introduce the basic idea of Visual Analytics, explain how automated discovery and visual analysis methods can be combined, discuss the main challenges of Visual Analytics, and show that combining automatic and visual analysis is the only chance to capture the complex, changing characteristics of the data. To further explain the Visual Analytics process, we provide examples from the area of document analysis.", 
    "editor": [
      {
        "familyName": "Jean-Fran", 
        "givenName": "Jean-Fran\u00e7ois", 
        "type": "Person"
      }, 
      {
        "familyName": "Berthold", 
        "givenName": "Michael R.", 
        "type": "Person"
      }, 
      {
        "familyName": "Horv\u00e1th", 
        "givenName": "Tam\u00e1s", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-88411-8_2", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-88410-1", 
        "978-3-540-88411-8"
      ], 
      "name": "Discovery Science", 
      "type": "Book"
    }, 
    "keywords": [
      "visual analytics", 
      "automatic data analysis techniques", 
      "visual analytics process", 
      "visual analysis techniques", 
      "numerous application areas", 
      "complex data sets", 
      "data sets", 
      "visual analysis method", 
      "interactive visualization", 
      "intelligent opponents", 
      "visualization techniques", 
      "application areas", 
      "high complexity", 
      "effective access", 
      "analysis techniques", 
      "analytics", 
      "visual level", 
      "main challenges", 
      "visual analysis", 
      "basic idea", 
      "analytic process", 
      "complexity", 
      "data analysis", 
      "data analysis technique", 
      "central challenge", 
      "set", 
      "analysis method", 
      "challenges", 
      "technique", 
      "appropriate way", 
      "document analysis", 
      "complicated process", 
      "visualization", 
      "information", 
      "optimizing", 
      "discovery", 
      "access", 
      "substantial information", 
      "process", 
      "idea", 
      "way", 
      "example", 
      "situation", 
      "data", 
      "method", 
      "humans", 
      "area", 
      "analysis", 
      "opponents", 
      "ability", 
      "dynamics", 
      "chance", 
      "cognitive abilities", 
      "combination", 
      "characteristics", 
      "insights", 
      "levels", 
      "only chance", 
      "complexes", 
      "approach", 
      "paper"
    ], 
    "name": "Visual Analytics: Combining Automated Discovery with Interactive Visualizations", 
    "pagination": "2-14", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028894451"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-88411-8_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-88411-8_2", 
      "https://app.dimensions.ai/details/publication/pub.1028894451"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_109.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-88411-8_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88411-8_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88411-8_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88411-8_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88411-8_2'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      22 PREDICATES      88 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-88411-8_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0802
4 anzsrc-for:0806
5 schema:author Nb13259c759da4884b4a98ac35946fabc
6 schema:datePublished 2008
7 schema:datePublishedReg 2008-01-01
8 schema:description In numerous application areas fast growing data sets develop with ever higher complexity and dynamics. A central challenge is to filter the substantial information and to communicate it to humans in an appropriate way. Approaches, which work either on a purely analytical or on a purely visual level, do not sufficiently help due to the dynamics and complexity of the underlying processes or due to a situation with intelligent opponents. Only a combination of data analysis and visualization techniques make an effective access to the otherwise unmanageably complex data sets possible.Visual analysis techniques extend the perceptual and cognitive abilities of humans with automatic data analysis techniques, and help to gain insights for optimizing and steering complicated processes. In the paper, we introduce the basic idea of Visual Analytics, explain how automated discovery and visual analysis methods can be combined, discuss the main challenges of Visual Analytics, and show that combining automatic and visual analysis is the only chance to capture the complex, changing characteristics of the data. To further explain the Visual Analytics process, we provide examples from the area of document analysis.
9 schema:editor N284963e930894693bd1dc53c780a9876
10 schema:genre chapter
11 schema:isAccessibleForFree true
12 schema:isPartOf N1c2c5a5df2434d93aa258a622450ff6f
13 schema:keywords ability
14 access
15 analysis
16 analysis method
17 analysis techniques
18 analytic process
19 analytics
20 application areas
21 approach
22 appropriate way
23 area
24 automatic data analysis techniques
25 basic idea
26 central challenge
27 challenges
28 chance
29 characteristics
30 cognitive abilities
31 combination
32 complex data sets
33 complexes
34 complexity
35 complicated process
36 data
37 data analysis
38 data analysis technique
39 data sets
40 discovery
41 document analysis
42 dynamics
43 effective access
44 example
45 high complexity
46 humans
47 idea
48 information
49 insights
50 intelligent opponents
51 interactive visualization
52 levels
53 main challenges
54 method
55 numerous application areas
56 only chance
57 opponents
58 optimizing
59 paper
60 process
61 set
62 situation
63 substantial information
64 technique
65 visual analysis
66 visual analysis method
67 visual analysis techniques
68 visual analytics
69 visual analytics process
70 visual level
71 visualization
72 visualization techniques
73 way
74 schema:name Visual Analytics: Combining Automated Discovery with Interactive Visualizations
75 schema:pagination 2-14
76 schema:productId N3680500ce0804a418e4c0534f0a65acb
77 N661ce35478014d0eb6e79b5f9ebf1a9a
78 schema:publisher N3f1b9e9d5cdd4490976efb73e6dbc47f
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028894451
80 https://doi.org/10.1007/978-3-540-88411-8_2
81 schema:sdDatePublished 2022-10-01T06:52
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N9ecfb7d2ebfb4add9a447fd2d7525b6f
84 schema:url https://doi.org/10.1007/978-3-540-88411-8_2
85 sgo:license sg:explorer/license/
86 sgo:sdDataset chapters
87 rdf:type schema:Chapter
88 N10bf8d3d3e804c8d82cdc195b95eef89 schema:familyName Horváth
89 schema:givenName Tamás
90 rdf:type schema:Person
91 N1c2c5a5df2434d93aa258a622450ff6f schema:isbn 978-3-540-88410-1
92 978-3-540-88411-8
93 schema:name Discovery Science
94 rdf:type schema:Book
95 N284963e930894693bd1dc53c780a9876 rdf:first Ne96310c5117f47a5a19cb1c43a375fce
96 rdf:rest Nc86e01eada2f462596e8fd675f5f41a7
97 N2cfe3f32093f4755851b9c5bf35a320c rdf:first sg:person.015015526443.35
98 rdf:rest rdf:nil
99 N3680500ce0804a418e4c0534f0a65acb schema:name doi
100 schema:value 10.1007/978-3-540-88411-8_2
101 rdf:type schema:PropertyValue
102 N3f1b9e9d5cdd4490976efb73e6dbc47f schema:name Springer Nature
103 rdf:type schema:Organisation
104 N661ce35478014d0eb6e79b5f9ebf1a9a schema:name dimensions_id
105 schema:value pub.1028894451
106 rdf:type schema:PropertyValue
107 N9461d157b05b4ab394b041c410fed742 rdf:first N10bf8d3d3e804c8d82cdc195b95eef89
108 rdf:rest rdf:nil
109 N9ecfb7d2ebfb4add9a447fd2d7525b6f schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nb13259c759da4884b4a98ac35946fabc rdf:first sg:person.0635776571.01
112 rdf:rest Ne5e27bbc0c39489a976d14df7131b648
113 Nc86e01eada2f462596e8fd675f5f41a7 rdf:first Nf56541d3cd054a35b4a9584572616da2
114 rdf:rest N9461d157b05b4ab394b041c410fed742
115 Ne28f0356d0494256a10f15f80f591241 rdf:first sg:person.07667765141.23
116 rdf:rest N2cfe3f32093f4755851b9c5bf35a320c
117 Ne5e27bbc0c39489a976d14df7131b648 rdf:first sg:person.0646626305.02
118 rdf:rest Ne28f0356d0494256a10f15f80f591241
119 Ne96310c5117f47a5a19cb1c43a375fce schema:familyName Jean-Fran
120 schema:givenName Jean-François
121 rdf:type schema:Person
122 Nf56541d3cd054a35b4a9584572616da2 schema:familyName Berthold
123 schema:givenName Michael R.
124 rdf:type schema:Person
125 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
126 schema:name Information and Computing Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
129 schema:name Artificial Intelligence and Image Processing
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
132 schema:name Computation Theory and Mathematics
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
135 schema:name Information Systems
136 rdf:type schema:DefinedTerm
137 sg:person.015015526443.35 schema:affiliation grid-institutes:grid.9811.1
138 schema:familyName Ziegler
139 schema:givenName Hartmut
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015015526443.35
141 rdf:type schema:Person
142 sg:person.0635776571.01 schema:affiliation grid-institutes:grid.9811.1
143 schema:familyName Keim
144 schema:givenName Daniel A.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
146 rdf:type schema:Person
147 sg:person.0646626305.02 schema:affiliation grid-institutes:grid.9811.1
148 schema:familyName Mansmann
149 schema:givenName Florian
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646626305.02
151 rdf:type schema:Person
152 sg:person.07667765141.23 schema:affiliation grid-institutes:grid.9811.1
153 schema:familyName Oelke
154 schema:givenName Daniela
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07667765141.23
156 rdf:type schema:Person
157 grid-institutes:grid.9811.1 schema:alternateName University of Konstanz, Germany
158 schema:name University of Konstanz, Germany
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...