The Polytope of Fuzzy Measures and Its Adjacency Graph View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Elías F. Combarro , Pedro Miranda

ABSTRACT

In this paper we deal with the problem of studying the structure of the polytope of fuzzy measures for finite referential sets. We prove that the diameter of the polytope of fuzzy measures is 3 for referentials of 3 elements or more. We also show that the polytope is combinatorial, whence we deduce that the adjacency graph of fuzzy measures is Hamilton connected if the cardinality of the referential set is not 2. We also give some results about the facets and edges of this polytope. Finally, we treat the corresponding results for the polytope given by the convex hull of monotone boolean functions. More... »

PAGES

74-85

Book

TITLE

Modeling Decisions for Artificial Intelligence

ISBN

978-3-540-88268-8
978-3-540-88269-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-88269-5_8

DOI

http://dx.doi.org/10.1007/978-3-540-88269-5_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047314201


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Artificial Intelligence Center, University of Oviedo, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Combarro", 
        "givenName": "El\u00edas F.", 
        "id": "sg:person.014120426453.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120426453.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Complutense University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.4795.f", 
          "name": [
            "Department of Statistics and O.R., Complutense University of Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miranda", 
        "givenName": "Pedro", 
        "id": "sg:person.015300367176.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015300367176.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0095-8956(81)90032-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000726863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1988.386.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003972811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-6666-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011173064", 
          "https://doi.org/10.1007/978-1-4615-6666-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-6666-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011173064", 
          "https://doi.org/10.1007/978-1-4615-6666-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00385808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019934330", 
          "https://doi.org/10.1007/bf00385808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00385808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019934330", 
          "https://doi.org/10.1007/bf00385808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-2434-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025989515", 
          "https://doi.org/10.1007/978-94-017-2434-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-017-2434-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025989515", 
          "https://doi.org/10.1007/978-94-017-2434-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2005.02.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026936812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1986-0835875-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027014547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0114(97)00168-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027090915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2007.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038462218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.disc.2004.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051171129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1986.1164871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061519896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2007.895953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218488597000440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062977816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1884324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069625544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1907921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069637200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073139172"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "In this paper we deal with the problem of studying the structure of the polytope of fuzzy measures for finite referential sets. We prove that the diameter of the polytope of fuzzy measures is 3 for referentials of 3 elements or more. We also show that the polytope is combinatorial, whence we deduce that the adjacency graph of fuzzy measures is Hamilton connected if the cardinality of the referential set is not 2. We also give some results about the facets and edges of this polytope. Finally, we treat the corresponding results for the polytope given by the convex hull of monotone boolean functions.", 
    "editor": [
      {
        "familyName": "Torra", 
        "givenName": "Vicen\u00e7", 
        "type": "Person"
      }, 
      {
        "familyName": "Narukawa", 
        "givenName": "Yasuo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-88269-5_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-88268-8", 
        "978-3-540-88269-5"
      ], 
      "name": "Modeling Decisions for Artificial Intelligence", 
      "type": "Book"
    }, 
    "name": "The Polytope of Fuzzy Measures and Its Adjacency Graph", 
    "pagination": "74-85", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-88269-5_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e163dedcb462033f34c515ee6bdd883ef898ba4844178aed7858ecb2e6d87e07"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047314201"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-88269-5_8", 
      "https://app.dimensions.ai/details/publication/pub.1047314201"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T06:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77577_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-88269-5_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88269-5_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88269-5_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88269-5_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-88269-5_8'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      23 PREDICATES      43 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-88269-5_8 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf310ce3f7a4c49a0ba658e1a79a970db
4 schema:citation sg:pub.10.1007/978-1-4615-6666-3
5 sg:pub.10.1007/978-94-017-2434-0
6 sg:pub.10.1007/bf00385808
7 https://doi.org/10.1016/0095-8956(81)90032-0
8 https://doi.org/10.1016/j.cor.2005.02.034
9 https://doi.org/10.1016/j.disc.2004.05.013
10 https://doi.org/10.1016/j.fss.2007.12.021
11 https://doi.org/10.1016/s0165-0114(97)00168-1
12 https://doi.org/10.1090/s0002-9939-1986-0835875-8
13 https://doi.org/10.1109/tassp.1986.1164871
14 https://doi.org/10.1109/tfuzz.2007.895953
15 https://doi.org/10.1142/s0218488597000440
16 https://doi.org/10.1515/crll.1988.386.139
17 https://doi.org/10.2307/1884324
18 https://doi.org/10.2307/1907921
19 https://doi.org/10.5802/aif.53
20 schema:datePublished 2008
21 schema:datePublishedReg 2008-01-01
22 schema:description In this paper we deal with the problem of studying the structure of the polytope of fuzzy measures for finite referential sets. We prove that the diameter of the polytope of fuzzy measures is 3 for referentials of 3 elements or more. We also show that the polytope is combinatorial, whence we deduce that the adjacency graph of fuzzy measures is Hamilton connected if the cardinality of the referential set is not 2. We also give some results about the facets and edges of this polytope. Finally, we treat the corresponding results for the polytope given by the convex hull of monotone boolean functions.
23 schema:editor N37ef8c669ea745e58d99fc1eb6b4ff1b
24 schema:genre chapter
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N12f88b9687fd4650a57b0a9b33e3b92f
28 schema:name The Polytope of Fuzzy Measures and Its Adjacency Graph
29 schema:pagination 74-85
30 schema:productId N64d384641a2a49acbb90d7415b31bbcb
31 Nb226bfeb22924d5180a2d55f580612ad
32 Nb5ce3fe45e144328b92741c763ffc983
33 schema:publisher Na822c43c4c954d41a1cf1be1efadd8c9
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047314201
35 https://doi.org/10.1007/978-3-540-88269-5_8
36 schema:sdDatePublished 2019-04-16T06:10
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Na63dfe5742034c22a45c6c4978c9ae14
39 schema:url https://link.springer.com/10.1007%2F978-3-540-88269-5_8
40 sgo:license sg:explorer/license/
41 sgo:sdDataset chapters
42 rdf:type schema:Chapter
43 N03b607ff39e24c33a9e2353cfa572ec0 schema:familyName Torra
44 schema:givenName Vicenç
45 rdf:type schema:Person
46 N105c9dc5dd0f4b7fb6cfc0510d714b00 schema:familyName Narukawa
47 schema:givenName Yasuo
48 rdf:type schema:Person
49 N12f11aa13cfd4118bc7654166e91ffa9 rdf:first N105c9dc5dd0f4b7fb6cfc0510d714b00
50 rdf:rest rdf:nil
51 N12f88b9687fd4650a57b0a9b33e3b92f schema:isbn 978-3-540-88268-8
52 978-3-540-88269-5
53 schema:name Modeling Decisions for Artificial Intelligence
54 rdf:type schema:Book
55 N37ef8c669ea745e58d99fc1eb6b4ff1b rdf:first N03b607ff39e24c33a9e2353cfa572ec0
56 rdf:rest N12f11aa13cfd4118bc7654166e91ffa9
57 N64d384641a2a49acbb90d7415b31bbcb schema:name doi
58 schema:value 10.1007/978-3-540-88269-5_8
59 rdf:type schema:PropertyValue
60 Na63dfe5742034c22a45c6c4978c9ae14 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Na822c43c4c954d41a1cf1be1efadd8c9 schema:location Berlin, Heidelberg
63 schema:name Springer Berlin Heidelberg
64 rdf:type schema:Organisation
65 Nb226bfeb22924d5180a2d55f580612ad schema:name dimensions_id
66 schema:value pub.1047314201
67 rdf:type schema:PropertyValue
68 Nb5ce3fe45e144328b92741c763ffc983 schema:name readcube_id
69 schema:value e163dedcb462033f34c515ee6bdd883ef898ba4844178aed7858ecb2e6d87e07
70 rdf:type schema:PropertyValue
71 Ndf66e56563734a77a34e204987872679 rdf:first sg:person.015300367176.59
72 rdf:rest rdf:nil
73 Nf310ce3f7a4c49a0ba658e1a79a970db rdf:first sg:person.014120426453.50
74 rdf:rest Ndf66e56563734a77a34e204987872679
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
79 schema:name Artificial Intelligence and Image Processing
80 rdf:type schema:DefinedTerm
81 sg:person.014120426453.50 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
82 schema:familyName Combarro
83 schema:givenName Elías F.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120426453.50
85 rdf:type schema:Person
86 sg:person.015300367176.59 schema:affiliation https://www.grid.ac/institutes/grid.4795.f
87 schema:familyName Miranda
88 schema:givenName Pedro
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015300367176.59
90 rdf:type schema:Person
91 sg:pub.10.1007/978-1-4615-6666-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011173064
92 https://doi.org/10.1007/978-1-4615-6666-3
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/978-94-017-2434-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025989515
95 https://doi.org/10.1007/978-94-017-2434-0
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf00385808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019934330
98 https://doi.org/10.1007/bf00385808
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0095-8956(81)90032-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000726863
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.cor.2005.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026936812
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.disc.2004.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051171129
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.fss.2007.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038462218
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0165-0114(97)00168-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027090915
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1090/s0002-9939-1986-0835875-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027014547
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/tassp.1986.1164871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061519896
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/tfuzz.2007.895953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606055
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1142/s0218488597000440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062977816
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1515/crll.1988.386.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003972811
119 rdf:type schema:CreativeWork
120 https://doi.org/10.2307/1884324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069625544
121 rdf:type schema:CreativeWork
122 https://doi.org/10.2307/1907921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069637200
123 rdf:type schema:CreativeWork
124 https://doi.org/10.5802/aif.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073139172
125 rdf:type schema:CreativeWork
126 https://www.grid.ac/institutes/grid.10863.3c schema:alternateName University of Oviedo
127 schema:name Artificial Intelligence Center, University of Oviedo, Spain
128 rdf:type schema:Organization
129 https://www.grid.ac/institutes/grid.4795.f schema:alternateName Complutense University of Madrid
130 schema:name Department of Statistics and O.R., Complutense University of Madrid, Spain
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...