Visual Analytics: Combining Automated Discovery with Interactive Visualizations View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2008

AUTHORS

Daniel A. Keim , Florian Mansmann , Daniela Oelke , Hartmut Ziegler

ABSTRACT

In numerous application areas fast growing data sets develop with ever higher complexity and dynamics. A central challenge is to filter the substantial information and to communicate it to humans in an appropriate way. Approaches, which work either on a purely analytical or on a purely visual level, do not sufficiently help due to the dynamics and complexity of the underlying processes or due to a situation with intelligent opponents. Only a combination of data analysis and visualization techniques make an effective access to the otherwise unmanageably complex data sets possible.Visual analysis techniques extend the perceptual and cognitive abilities of humans with automatic data analysis techniques, and help to gain insights for optimizing and steering complicated processes. In the paper, we introduce the basic idea of Visual Analytics, explain how automated discovery and visual analysis methods can be combined, discuss the main challenges of Visual Analytics, and show that combining automatic and visual analysis is the only chance to capture the complex, changing characteristics of the data. To further explain the Visual Analytics process, we provide examples from the area of document analysis. More... »

PAGES

2-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-87987-9_2

DOI

http://dx.doi.org/10.1007/978-3-540-87987-9_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007091128


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keim", 
        "givenName": "Daniel A.", 
        "id": "sg:person.0635776571.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansmann", 
        "givenName": "Florian", 
        "id": "sg:person.0646626305.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646626305.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oelke", 
        "givenName": "Daniela", 
        "id": "sg:person.07667765141.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07667765141.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ziegler", 
        "givenName": "Hartmut", 
        "id": "sg:person.015015526443.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015015526443.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "In numerous application areas fast growing data sets develop with ever higher complexity and dynamics. A central challenge is to filter the substantial information and to communicate it to humans in an appropriate way. Approaches, which work either on a purely analytical or on a purely visual level, do not sufficiently help due to the dynamics and complexity of the underlying processes or due to a situation with intelligent opponents. Only a combination of data analysis and visualization techniques make an effective access to the otherwise unmanageably complex data sets possible.Visual analysis techniques extend the perceptual and cognitive abilities of humans with automatic data analysis techniques, and help to gain insights for optimizing and steering complicated processes. In the paper, we introduce the basic idea of Visual Analytics, explain how automated discovery and visual analysis methods can be combined, discuss the main challenges of Visual Analytics, and show that combining automatic and visual analysis is the only chance to capture the complex, changing characteristics of the data. To further explain the Visual Analytics process, we provide examples from the area of document analysis.", 
    "editor": [
      {
        "familyName": "Freund", 
        "givenName": "Yoav", 
        "type": "Person"
      }, 
      {
        "familyName": "Gy\u00f6rfi", 
        "givenName": "L\u00e1szl\u00f3", 
        "type": "Person"
      }, 
      {
        "familyName": "Tur\u00e1n", 
        "givenName": "Gy\u00f6rgy", 
        "type": "Person"
      }, 
      {
        "familyName": "Zeugmann", 
        "givenName": "Thomas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-87987-9_2", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-87986-2", 
        "978-3-540-87987-9"
      ], 
      "name": "Algorithmic Learning Theory", 
      "type": "Book"
    }, 
    "keywords": [
      "visual analytics", 
      "automatic data analysis techniques", 
      "visual analytics process", 
      "visual analysis techniques", 
      "numerous application areas", 
      "complex data sets", 
      "data sets", 
      "visual analysis method", 
      "interactive visualization", 
      "intelligent opponents", 
      "visualization techniques", 
      "application areas", 
      "high complexity", 
      "effective access", 
      "analysis techniques", 
      "analytics", 
      "visual level", 
      "main challenges", 
      "visual analysis", 
      "basic idea", 
      "analytic process", 
      "complexity", 
      "data analysis", 
      "data analysis technique", 
      "central challenge", 
      "set", 
      "analysis method", 
      "challenges", 
      "technique", 
      "appropriate way", 
      "document analysis", 
      "complicated process", 
      "visualization", 
      "information", 
      "optimizing", 
      "discovery", 
      "access", 
      "substantial information", 
      "process", 
      "idea", 
      "way", 
      "example", 
      "situation", 
      "data", 
      "method", 
      "humans", 
      "area", 
      "analysis", 
      "opponents", 
      "ability", 
      "dynamics", 
      "chance", 
      "cognitive abilities", 
      "combination", 
      "characteristics", 
      "insights", 
      "levels", 
      "only chance", 
      "complexes", 
      "approach", 
      "paper"
    ], 
    "name": "Visual Analytics: Combining Automated Discovery with Interactive Visualizations", 
    "pagination": "2-2", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007091128"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-87987-9_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-87987-9_2", 
      "https://app.dimensions.ai/details/publication/pub.1007091128"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_389.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-87987-9_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87987-9_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87987-9_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87987-9_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87987-9_2'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      22 PREDICATES      88 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-87987-9_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0802
4 anzsrc-for:0806
5 schema:author N50ff39f028524c8fb83de8ca35d05f01
6 schema:datePublished 2008
7 schema:datePublishedReg 2008-01-01
8 schema:description In numerous application areas fast growing data sets develop with ever higher complexity and dynamics. A central challenge is to filter the substantial information and to communicate it to humans in an appropriate way. Approaches, which work either on a purely analytical or on a purely visual level, do not sufficiently help due to the dynamics and complexity of the underlying processes or due to a situation with intelligent opponents. Only a combination of data analysis and visualization techniques make an effective access to the otherwise unmanageably complex data sets possible.Visual analysis techniques extend the perceptual and cognitive abilities of humans with automatic data analysis techniques, and help to gain insights for optimizing and steering complicated processes. In the paper, we introduce the basic idea of Visual Analytics, explain how automated discovery and visual analysis methods can be combined, discuss the main challenges of Visual Analytics, and show that combining automatic and visual analysis is the only chance to capture the complex, changing characteristics of the data. To further explain the Visual Analytics process, we provide examples from the area of document analysis.
9 schema:editor N2208e15842e44e688e8b9c64e2092b68
10 schema:genre chapter
11 schema:isAccessibleForFree true
12 schema:isPartOf N05c39c6a913545b38d022c208f7da46e
13 schema:keywords ability
14 access
15 analysis
16 analysis method
17 analysis techniques
18 analytic process
19 analytics
20 application areas
21 approach
22 appropriate way
23 area
24 automatic data analysis techniques
25 basic idea
26 central challenge
27 challenges
28 chance
29 characteristics
30 cognitive abilities
31 combination
32 complex data sets
33 complexes
34 complexity
35 complicated process
36 data
37 data analysis
38 data analysis technique
39 data sets
40 discovery
41 document analysis
42 dynamics
43 effective access
44 example
45 high complexity
46 humans
47 idea
48 information
49 insights
50 intelligent opponents
51 interactive visualization
52 levels
53 main challenges
54 method
55 numerous application areas
56 only chance
57 opponents
58 optimizing
59 paper
60 process
61 set
62 situation
63 substantial information
64 technique
65 visual analysis
66 visual analysis method
67 visual analysis techniques
68 visual analytics
69 visual analytics process
70 visual level
71 visualization
72 visualization techniques
73 way
74 schema:name Visual Analytics: Combining Automated Discovery with Interactive Visualizations
75 schema:pagination 2-2
76 schema:productId N1968c9e923094730b317bf49cee484de
77 Ndd4ff5912d0d460784c9c03df9581e4c
78 schema:publisher Nf7edfe55b77e4d468281642ce9b6d969
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007091128
80 https://doi.org/10.1007/978-3-540-87987-9_2
81 schema:sdDatePublished 2022-12-01T06:52
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher Na9e1f7c9d2d349889ac2f134dbea4806
84 schema:url https://doi.org/10.1007/978-3-540-87987-9_2
85 sgo:license sg:explorer/license/
86 sgo:sdDataset chapters
87 rdf:type schema:Chapter
88 N00ebefbb837f4abfb5e7335a1dbbaf7b schema:familyName Zeugmann
89 schema:givenName Thomas
90 rdf:type schema:Person
91 N05c39c6a913545b38d022c208f7da46e schema:isbn 978-3-540-87986-2
92 978-3-540-87987-9
93 schema:name Algorithmic Learning Theory
94 rdf:type schema:Book
95 N132f816fc0ce48d5b637a7f7b1c90a2a schema:familyName Turán
96 schema:givenName György
97 rdf:type schema:Person
98 N1968c9e923094730b317bf49cee484de schema:name doi
99 schema:value 10.1007/978-3-540-87987-9_2
100 rdf:type schema:PropertyValue
101 N2208e15842e44e688e8b9c64e2092b68 rdf:first Ncc8cb6f0c44d47059394ddfda6d0e0f4
102 rdf:rest N248c6827e79b4420a64e13724e428af1
103 N248c6827e79b4420a64e13724e428af1 rdf:first Nf821be5f48fb4aba9215d74a92ae1477
104 rdf:rest N7dabf9ea446d4b5da9de0d2c9c30ac08
105 N50ff39f028524c8fb83de8ca35d05f01 rdf:first sg:person.0635776571.01
106 rdf:rest N56b52a75760140069cfd264a5d345859
107 N56b52a75760140069cfd264a5d345859 rdf:first sg:person.0646626305.02
108 rdf:rest N5e7f35b6a9f444f4bcf7df3f29f284f0
109 N5e7f35b6a9f444f4bcf7df3f29f284f0 rdf:first sg:person.07667765141.23
110 rdf:rest Nc8bb99cf5a97409097087d8df294dbfe
111 N7dabf9ea446d4b5da9de0d2c9c30ac08 rdf:first N132f816fc0ce48d5b637a7f7b1c90a2a
112 rdf:rest Nebe72e28ddc0477691e7122bb95f4a57
113 Na9e1f7c9d2d349889ac2f134dbea4806 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nc8bb99cf5a97409097087d8df294dbfe rdf:first sg:person.015015526443.35
116 rdf:rest rdf:nil
117 Ncc8cb6f0c44d47059394ddfda6d0e0f4 schema:familyName Freund
118 schema:givenName Yoav
119 rdf:type schema:Person
120 Ndd4ff5912d0d460784c9c03df9581e4c schema:name dimensions_id
121 schema:value pub.1007091128
122 rdf:type schema:PropertyValue
123 Nebe72e28ddc0477691e7122bb95f4a57 rdf:first N00ebefbb837f4abfb5e7335a1dbbaf7b
124 rdf:rest rdf:nil
125 Nf7edfe55b77e4d468281642ce9b6d969 schema:name Springer Nature
126 rdf:type schema:Organisation
127 Nf821be5f48fb4aba9215d74a92ae1477 schema:familyName Györfi
128 schema:givenName László
129 rdf:type schema:Person
130 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
131 schema:name Information and Computing Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
134 schema:name Artificial Intelligence and Image Processing
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
137 schema:name Computation Theory and Mathematics
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
140 schema:name Information Systems
141 rdf:type schema:DefinedTerm
142 sg:person.015015526443.35 schema:affiliation grid-institutes:grid.9811.1
143 schema:familyName Ziegler
144 schema:givenName Hartmut
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015015526443.35
146 rdf:type schema:Person
147 sg:person.0635776571.01 schema:affiliation grid-institutes:grid.9811.1
148 schema:familyName Keim
149 schema:givenName Daniel A.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
151 rdf:type schema:Person
152 sg:person.0646626305.02 schema:affiliation grid-institutes:grid.9811.1
153 schema:familyName Mansmann
154 schema:givenName Florian
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646626305.02
156 rdf:type schema:Person
157 sg:person.07667765141.23 schema:affiliation grid-institutes:grid.9811.1
158 schema:familyName Oelke
159 schema:givenName Daniela
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07667765141.23
161 rdf:type schema:Person
162 grid-institutes:grid.9811.1 schema:alternateName University of Konstanz, Germany
163 schema:name University of Konstanz, Germany
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...