Visual Analytics: Combining Automated Discovery with Interactive Visualizations View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2008

AUTHORS

Daniel A. Keim , Florian Mansmann , Daniela Oelke , Hartmut Ziegler

ABSTRACT

In numerous application areas fast growing data sets develop with ever higher complexity and dynamics. A central challenge is to filter the substantial information and to communicate it to humans in an appropriate way. Approaches, which work either on a purely analytical or on a purely visual level, do not sufficiently help due to the dynamics and complexity of the underlying processes or due to a situation with intelligent opponents. Only a combination of data analysis and visualization techniques make an effective access to the otherwise unmanageably complex data sets possible.Visual analysis techniques extend the perceptual and cognitive abilities of humans with automatic data analysis techniques, and help to gain insights for optimizing and steering complicated processes. In the paper, we introduce the basic idea of Visual Analytics, explain how automated discovery and visual analysis methods can be combined, discuss the main challenges of Visual Analytics, and show that combining automatic and visual analysis is the only chance to capture the complex, changing characteristics of the data. To further explain the Visual Analytics process, we provide examples from the area of document analysis. More... »

PAGES

2-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-87987-9_2

DOI

http://dx.doi.org/10.1007/978-3-540-87987-9_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007091128


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keim", 
        "givenName": "Daniel A.", 
        "id": "sg:person.0635776571.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansmann", 
        "givenName": "Florian", 
        "id": "sg:person.0646626305.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646626305.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oelke", 
        "givenName": "Daniela", 
        "id": "sg:person.07667765141.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07667765141.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Konstanz, Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "University of Konstanz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ziegler", 
        "givenName": "Hartmut", 
        "id": "sg:person.015015526443.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015015526443.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "In numerous application areas fast growing data sets develop with ever higher complexity and dynamics. A central challenge is to filter the substantial information and to communicate it to humans in an appropriate way. Approaches, which work either on a purely analytical or on a purely visual level, do not sufficiently help due to the dynamics and complexity of the underlying processes or due to a situation with intelligent opponents. Only a combination of data analysis and visualization techniques make an effective access to the otherwise unmanageably complex data sets possible.Visual analysis techniques extend the perceptual and cognitive abilities of humans with automatic data analysis techniques, and help to gain insights for optimizing and steering complicated processes. In the paper, we introduce the basic idea of Visual Analytics, explain how automated discovery and visual analysis methods can be combined, discuss the main challenges of Visual Analytics, and show that combining automatic and visual analysis is the only chance to capture the complex, changing characteristics of the data. To further explain the Visual Analytics process, we provide examples from the area of document analysis.", 
    "editor": [
      {
        "familyName": "Freund", 
        "givenName": "Yoav", 
        "type": "Person"
      }, 
      {
        "familyName": "Gy\u00f6rfi", 
        "givenName": "L\u00e1szl\u00f3", 
        "type": "Person"
      }, 
      {
        "familyName": "Tur\u00e1n", 
        "givenName": "Gy\u00f6rgy", 
        "type": "Person"
      }, 
      {
        "familyName": "Zeugmann", 
        "givenName": "Thomas", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-87987-9_2", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-87986-2", 
        "978-3-540-87987-9"
      ], 
      "name": "Algorithmic Learning Theory", 
      "type": "Book"
    }, 
    "keywords": [
      "visual analytics", 
      "automatic data analysis techniques", 
      "visual analytics process", 
      "visual analysis techniques", 
      "numerous application areas", 
      "complex data sets", 
      "data sets", 
      "visual analysis method", 
      "interactive visualization", 
      "intelligent opponents", 
      "visualization techniques", 
      "application areas", 
      "high complexity", 
      "effective access", 
      "analysis techniques", 
      "analytics", 
      "visual level", 
      "main challenges", 
      "visual analysis", 
      "basic idea", 
      "analytic process", 
      "complexity", 
      "data analysis", 
      "data analysis technique", 
      "central challenge", 
      "set", 
      "analysis method", 
      "challenges", 
      "technique", 
      "appropriate way", 
      "document analysis", 
      "complicated process", 
      "visualization", 
      "information", 
      "optimizing", 
      "discovery", 
      "access", 
      "substantial information", 
      "process", 
      "idea", 
      "way", 
      "example", 
      "situation", 
      "data", 
      "method", 
      "humans", 
      "area", 
      "analysis", 
      "opponents", 
      "ability", 
      "dynamics", 
      "chance", 
      "cognitive abilities", 
      "combination", 
      "characteristics", 
      "insights", 
      "levels", 
      "only chance", 
      "complexes", 
      "approach", 
      "paper"
    ], 
    "name": "Visual Analytics: Combining Automated Discovery with Interactive Visualizations", 
    "pagination": "2-2", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007091128"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-87987-9_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-87987-9_2", 
      "https://app.dimensions.ai/details/publication/pub.1007091128"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_134.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-87987-9_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87987-9_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87987-9_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87987-9_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87987-9_2'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      22 PREDICATES      88 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-87987-9_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0802
4 anzsrc-for:0806
5 schema:author N5c0c79abcb564c678c5c2e30b2155f8b
6 schema:datePublished 2008
7 schema:datePublishedReg 2008-01-01
8 schema:description In numerous application areas fast growing data sets develop with ever higher complexity and dynamics. A central challenge is to filter the substantial information and to communicate it to humans in an appropriate way. Approaches, which work either on a purely analytical or on a purely visual level, do not sufficiently help due to the dynamics and complexity of the underlying processes or due to a situation with intelligent opponents. Only a combination of data analysis and visualization techniques make an effective access to the otherwise unmanageably complex data sets possible.Visual analysis techniques extend the perceptual and cognitive abilities of humans with automatic data analysis techniques, and help to gain insights for optimizing and steering complicated processes. In the paper, we introduce the basic idea of Visual Analytics, explain how automated discovery and visual analysis methods can be combined, discuss the main challenges of Visual Analytics, and show that combining automatic and visual analysis is the only chance to capture the complex, changing characteristics of the data. To further explain the Visual Analytics process, we provide examples from the area of document analysis.
9 schema:editor N9f1af9fa16c54bc8b1d5a28b0b1ed3e9
10 schema:genre chapter
11 schema:isAccessibleForFree true
12 schema:isPartOf Ne6851d659b0946bd82a606ad8dab7b87
13 schema:keywords ability
14 access
15 analysis
16 analysis method
17 analysis techniques
18 analytic process
19 analytics
20 application areas
21 approach
22 appropriate way
23 area
24 automatic data analysis techniques
25 basic idea
26 central challenge
27 challenges
28 chance
29 characteristics
30 cognitive abilities
31 combination
32 complex data sets
33 complexes
34 complexity
35 complicated process
36 data
37 data analysis
38 data analysis technique
39 data sets
40 discovery
41 document analysis
42 dynamics
43 effective access
44 example
45 high complexity
46 humans
47 idea
48 information
49 insights
50 intelligent opponents
51 interactive visualization
52 levels
53 main challenges
54 method
55 numerous application areas
56 only chance
57 opponents
58 optimizing
59 paper
60 process
61 set
62 situation
63 substantial information
64 technique
65 visual analysis
66 visual analysis method
67 visual analysis techniques
68 visual analytics
69 visual analytics process
70 visual level
71 visualization
72 visualization techniques
73 way
74 schema:name Visual Analytics: Combining Automated Discovery with Interactive Visualizations
75 schema:pagination 2-2
76 schema:productId N30c09077a49841e3b0ffa14c1932621c
77 Nb26ba9b10bf5448485f6e230bd2906c6
78 schema:publisher N320b310fcfec4ca3a3aed22cd9b80fa7
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007091128
80 https://doi.org/10.1007/978-3-540-87987-9_2
81 schema:sdDatePublished 2022-09-02T16:10
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher Ncc86b6ddc7394965abbee754c846205e
84 schema:url https://doi.org/10.1007/978-3-540-87987-9_2
85 sgo:license sg:explorer/license/
86 sgo:sdDataset chapters
87 rdf:type schema:Chapter
88 N1b4d1a99ddd047b0984a6119a7e909a7 rdf:first N8835c08c74374667b4b6c8bd959b30ac
89 rdf:rest N45aa37df07f94ba4a6f345ad1a5698ab
90 N1ca4903e2b7a47ad88e067fa8d40dfe2 rdf:first sg:person.0646626305.02
91 rdf:rest N86122451d80a4c2cb46ed86d6a65951e
92 N2547671f7c854c2a91ee37edee381d80 rdf:first N4e15ccae060b418da51290e9b6e977f8
93 rdf:rest N1b4d1a99ddd047b0984a6119a7e909a7
94 N30c09077a49841e3b0ffa14c1932621c schema:name doi
95 schema:value 10.1007/978-3-540-87987-9_2
96 rdf:type schema:PropertyValue
97 N320b310fcfec4ca3a3aed22cd9b80fa7 schema:name Springer Nature
98 rdf:type schema:Organisation
99 N45aa37df07f94ba4a6f345ad1a5698ab rdf:first Nc9e97da4edbe49d09113db38149d0001
100 rdf:rest rdf:nil
101 N4e15ccae060b418da51290e9b6e977f8 schema:familyName Györfi
102 schema:givenName László
103 rdf:type schema:Person
104 N5c0c79abcb564c678c5c2e30b2155f8b rdf:first sg:person.0635776571.01
105 rdf:rest N1ca4903e2b7a47ad88e067fa8d40dfe2
106 N5d16e0c4b2014040a1a85885d20d450f rdf:first sg:person.015015526443.35
107 rdf:rest rdf:nil
108 N86122451d80a4c2cb46ed86d6a65951e rdf:first sg:person.07667765141.23
109 rdf:rest N5d16e0c4b2014040a1a85885d20d450f
110 N8835c08c74374667b4b6c8bd959b30ac schema:familyName Turán
111 schema:givenName György
112 rdf:type schema:Person
113 N9f1af9fa16c54bc8b1d5a28b0b1ed3e9 rdf:first Nea9e61e12b20481791821c92b61c4a63
114 rdf:rest N2547671f7c854c2a91ee37edee381d80
115 Nb26ba9b10bf5448485f6e230bd2906c6 schema:name dimensions_id
116 schema:value pub.1007091128
117 rdf:type schema:PropertyValue
118 Nc9e97da4edbe49d09113db38149d0001 schema:familyName Zeugmann
119 schema:givenName Thomas
120 rdf:type schema:Person
121 Ncc86b6ddc7394965abbee754c846205e schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 Ne6851d659b0946bd82a606ad8dab7b87 schema:isbn 978-3-540-87986-2
124 978-3-540-87987-9
125 schema:name Algorithmic Learning Theory
126 rdf:type schema:Book
127 Nea9e61e12b20481791821c92b61c4a63 schema:familyName Freund
128 schema:givenName Yoav
129 rdf:type schema:Person
130 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
131 schema:name Information and Computing Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
134 schema:name Artificial Intelligence and Image Processing
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
137 schema:name Computation Theory and Mathematics
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
140 schema:name Information Systems
141 rdf:type schema:DefinedTerm
142 sg:person.015015526443.35 schema:affiliation grid-institutes:grid.9811.1
143 schema:familyName Ziegler
144 schema:givenName Hartmut
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015015526443.35
146 rdf:type schema:Person
147 sg:person.0635776571.01 schema:affiliation grid-institutes:grid.9811.1
148 schema:familyName Keim
149 schema:givenName Daniel A.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
151 rdf:type schema:Person
152 sg:person.0646626305.02 schema:affiliation grid-institutes:grid.9811.1
153 schema:familyName Mansmann
154 schema:givenName Florian
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646626305.02
156 rdf:type schema:Person
157 sg:person.07667765141.23 schema:affiliation grid-institutes:grid.9811.1
158 schema:familyName Oelke
159 schema:givenName Daniela
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07667765141.23
161 rdf:type schema:Person
162 grid-institutes:grid.9811.1 schema:alternateName University of Konstanz, Germany
163 schema:name University of Konstanz, Germany
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...