Ontology type: schema:Chapter
2008
AUTHORS ABSTRACTUpper bounds on rates of approximation by neural networks are derived for functions representable as integrals in the form of networks with infinitely many units. The bounds are applied to perceptron networks.
PAGES31-40
Artificial Neural Networks - ICANN 2008
ISBN
978-3-540-87535-2
978-3-540-87536-9
http://scigraph.springernature.com/pub.10.1007/978-3-540-87536-9_4
DOIhttp://dx.doi.org/10.1007/978-3-540-87536-9_4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1028430119
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"author": [
{
"affiliation": {
"alternateName": "Georgetown University",
"id": "https://www.grid.ac/institutes/grid.213910.8",
"name": [
"Department of Mathematics, Georgetown University, D.C. 20057-1233, Washington, USA"
],
"type": "Organization"
},
"familyName": "Kainen",
"givenName": "Paul C.",
"id": "sg:person.013607306243.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013607306243.38"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Computer Science",
"id": "https://www.grid.ac/institutes/grid.448092.3",
"name": [
"Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vod\u00e1renskou v\u011b\u017e\u00ed 2, Prague 8, Czech Republic"
],
"type": "Organization"
},
"familyName": "K\u016frkov\u00e1",
"givenName": "V\u011bra",
"id": "sg:person.0627676237.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627676237.51"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-540-71629-7_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003782208",
"https://doi.org/10.1007/978-3-540-71629-7_2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-1996-5_16",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008720603",
"https://doi.org/10.1007/978-1-4612-1996-5_16"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-1996-5_16",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008720603",
"https://doi.org/10.1007/978-1-4612-1996-5_16"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0893-6080(91)90075-g",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010138860"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0893-6080(91)90075-g",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010138860"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0893-6080(97)00028-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018224020"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/168304.168357",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031201632"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1162/neco.2008.20.1.252",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033187062"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jat.2006.12.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043148184"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/18.256500",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061098999"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/18.256500",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061098999"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/18.256500",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061098999"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/s1052623403426507",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062883358"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/aos/1176348546",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064408657"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/ijcnn.1989.118639",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1086206762"
],
"type": "CreativeWork"
}
],
"datePublished": "2008",
"datePublishedReg": "2008-01-01",
"description": "Upper bounds on rates of approximation by neural networks are derived for functions representable as integrals in the form of networks with infinitely many units. The bounds are applied to perceptron networks.",
"editor": [
{
"familyName": "K\u016frkov\u00e1",
"givenName": "V\u00e9ra",
"type": "Person"
},
{
"familyName": "Neruda",
"givenName": "Roman",
"type": "Person"
},
{
"familyName": "Koutn\u00edk",
"givenName": "Jan",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-540-87536-9_4",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-87535-2",
"978-3-540-87536-9"
],
"name": "Artificial Neural Networks - ICANN 2008",
"type": "Book"
},
"name": "Estimates of Network Complexity and Integral Representations",
"pagination": "31-40",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-540-87536-9_4"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"876f16b58ea22206fee5fcfcaa46130bfbc598cc7e9d2406a1b97244d57ccf67"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1028430119"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-540-87536-9_4",
"https://app.dimensions.ai/details/publication/pub.1028430119"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T06:11",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77579_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-540-87536-9_4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87536-9_4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87536-9_4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87536-9_4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87536-9_4'
This table displays all metadata directly associated to this object as RDF triples.
112 TRIPLES
22 PREDICATES
36 URIs
20 LITERALS
8 BLANK NODES