Estimates of Network Complexity and Integral Representations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Paul C. Kainen , Věra Kůrková

ABSTRACT

Upper bounds on rates of approximation by neural networks are derived for functions representable as integrals in the form of networks with infinitely many units. The bounds are applied to perceptron networks.

PAGES

31-40

References to SciGraph publications

Book

TITLE

Artificial Neural Networks - ICANN 2008

ISBN

978-3-540-87535-2
978-3-540-87536-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-87536-9_4

DOI

http://dx.doi.org/10.1007/978-3-540-87536-9_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028430119


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Georgetown University", 
          "id": "https://www.grid.ac/institutes/grid.213910.8", 
          "name": [
            "Department of Mathematics, Georgetown University, D.C. 20057-1233, Washington, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kainen", 
        "givenName": "Paul C.", 
        "id": "sg:person.013607306243.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013607306243.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Computer Science", 
          "id": "https://www.grid.ac/institutes/grid.448092.3", 
          "name": [
            "Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vod\u00e1renskou v\u011b\u017e\u00ed 2, Prague 8, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u016frkov\u00e1", 
        "givenName": "V\u011bra", 
        "id": "sg:person.0627676237.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627676237.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-71629-7_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003782208", 
          "https://doi.org/10.1007/978-3-540-71629-7_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1996-5_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008720603", 
          "https://doi.org/10.1007/978-1-4612-1996-5_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1996-5_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008720603", 
          "https://doi.org/10.1007/978-1-4612-1996-5_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(91)90075-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010138860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0893-6080(91)90075-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010138860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0893-6080(97)00028-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018224020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/168304.168357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031201632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2008.20.1.252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033187062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jat.2006.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043148184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.256500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061098999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.256500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061098999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.256500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061098999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1052623403426507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062883358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176348546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064408657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.1989.118639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086206762"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "Upper bounds on rates of approximation by neural networks are derived for functions representable as integrals in the form of networks with infinitely many units. The bounds are applied to perceptron networks.", 
    "editor": [
      {
        "familyName": "K\u016frkov\u00e1", 
        "givenName": "V\u00e9ra", 
        "type": "Person"
      }, 
      {
        "familyName": "Neruda", 
        "givenName": "Roman", 
        "type": "Person"
      }, 
      {
        "familyName": "Koutn\u00edk", 
        "givenName": "Jan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-87536-9_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-87535-2", 
        "978-3-540-87536-9"
      ], 
      "name": "Artificial Neural Networks - ICANN 2008", 
      "type": "Book"
    }, 
    "name": "Estimates of Network Complexity and Integral Representations", 
    "pagination": "31-40", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-87536-9_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "876f16b58ea22206fee5fcfcaa46130bfbc598cc7e9d2406a1b97244d57ccf67"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028430119"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-87536-9_4", 
      "https://app.dimensions.ai/details/publication/pub.1028430119"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T06:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77579_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-87536-9_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87536-9_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87536-9_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87536-9_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87536-9_4'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      22 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-87536-9_4 schema:author Ne335220c67494ba5a4656e27f4cd4842
2 schema:citation sg:pub.10.1007/978-1-4612-1996-5_16
3 sg:pub.10.1007/978-3-540-71629-7_2
4 https://doi.org/10.1016/0893-6080(91)90075-g
5 https://doi.org/10.1016/j.jat.2006.12.009
6 https://doi.org/10.1016/s0893-6080(97)00028-2
7 https://doi.org/10.1109/18.256500
8 https://doi.org/10.1109/ijcnn.1989.118639
9 https://doi.org/10.1137/s1052623403426507
10 https://doi.org/10.1145/168304.168357
11 https://doi.org/10.1162/neco.2008.20.1.252
12 https://doi.org/10.1214/aos/1176348546
13 schema:datePublished 2008
14 schema:datePublishedReg 2008-01-01
15 schema:description Upper bounds on rates of approximation by neural networks are derived for functions representable as integrals in the form of networks with infinitely many units. The bounds are applied to perceptron networks.
16 schema:editor Ne958467929094a838f0193b0a42ccfca
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Nb6e2aaf881fc4fe7bd8d390b08fc83e1
21 schema:name Estimates of Network Complexity and Integral Representations
22 schema:pagination 31-40
23 schema:productId N379ee04d84c84f3ca6eb472b97402988
24 N64ca373192984d49afa55091964bae03
25 N8bf4775135a84ec7b5b4d456feb5310b
26 schema:publisher N900ea65e689648a9a15099dacb24624b
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028430119
28 https://doi.org/10.1007/978-3-540-87536-9_4
29 schema:sdDatePublished 2019-04-16T06:11
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N277cb179cdb344938fb5cf77fa30a8c0
32 schema:url https://link.springer.com/10.1007%2F978-3-540-87536-9_4
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N1607abb6eaf24e04b40d6e13094329fb rdf:first sg:person.0627676237.51
37 rdf:rest rdf:nil
38 N2742fcfe01424f3fa9c641e12f8f1837 rdf:first N696d45fc049c4e60b0f8672c88234b36
39 rdf:rest rdf:nil
40 N277cb179cdb344938fb5cf77fa30a8c0 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N379ee04d84c84f3ca6eb472b97402988 schema:name readcube_id
43 schema:value 876f16b58ea22206fee5fcfcaa46130bfbc598cc7e9d2406a1b97244d57ccf67
44 rdf:type schema:PropertyValue
45 N4cb4282748e8477c89f8a9bc44e69b2f schema:familyName Kůrková
46 schema:givenName Véra
47 rdf:type schema:Person
48 N5cf0ed814bca4b2c8ee296c432182026 schema:familyName Neruda
49 schema:givenName Roman
50 rdf:type schema:Person
51 N64ca373192984d49afa55091964bae03 schema:name doi
52 schema:value 10.1007/978-3-540-87536-9_4
53 rdf:type schema:PropertyValue
54 N696d45fc049c4e60b0f8672c88234b36 schema:familyName Koutník
55 schema:givenName Jan
56 rdf:type schema:Person
57 N8bf4775135a84ec7b5b4d456feb5310b schema:name dimensions_id
58 schema:value pub.1028430119
59 rdf:type schema:PropertyValue
60 N8f776abb4c9040e9b51b88c6ad212093 rdf:first N5cf0ed814bca4b2c8ee296c432182026
61 rdf:rest N2742fcfe01424f3fa9c641e12f8f1837
62 N900ea65e689648a9a15099dacb24624b schema:location Berlin, Heidelberg
63 schema:name Springer Berlin Heidelberg
64 rdf:type schema:Organisation
65 Nb6e2aaf881fc4fe7bd8d390b08fc83e1 schema:isbn 978-3-540-87535-2
66 978-3-540-87536-9
67 schema:name Artificial Neural Networks - ICANN 2008
68 rdf:type schema:Book
69 Ne335220c67494ba5a4656e27f4cd4842 rdf:first sg:person.013607306243.38
70 rdf:rest N1607abb6eaf24e04b40d6e13094329fb
71 Ne958467929094a838f0193b0a42ccfca rdf:first N4cb4282748e8477c89f8a9bc44e69b2f
72 rdf:rest N8f776abb4c9040e9b51b88c6ad212093
73 sg:person.013607306243.38 schema:affiliation https://www.grid.ac/institutes/grid.213910.8
74 schema:familyName Kainen
75 schema:givenName Paul C.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013607306243.38
77 rdf:type schema:Person
78 sg:person.0627676237.51 schema:affiliation https://www.grid.ac/institutes/grid.448092.3
79 schema:familyName Kůrková
80 schema:givenName Věra
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627676237.51
82 rdf:type schema:Person
83 sg:pub.10.1007/978-1-4612-1996-5_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008720603
84 https://doi.org/10.1007/978-1-4612-1996-5_16
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/978-3-540-71629-7_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003782208
87 https://doi.org/10.1007/978-3-540-71629-7_2
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0893-6080(91)90075-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1010138860
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.jat.2006.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043148184
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/s0893-6080(97)00028-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018224020
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/18.256500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061098999
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1109/ijcnn.1989.118639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086206762
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1137/s1052623403426507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062883358
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1145/168304.168357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031201632
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1162/neco.2008.20.1.252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033187062
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1214/aos/1176348546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064408657
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.213910.8 schema:alternateName Georgetown University
108 schema:name Department of Mathematics, Georgetown University, D.C. 20057-1233, Washington, USA
109 rdf:type schema:Organization
110 https://www.grid.ac/institutes/grid.448092.3 schema:alternateName Institute of Computer Science
111 schema:name Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou věží 2, Prague 8, Czech Republic
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...