Ontology type: schema:Chapter Open Access: True
2008
AUTHORSMuhammad Jafar Sadeq , Matt Duckham
ABSTRACTWireless sensor networks are growing from a few hand-placed devices to more large-scale networks in terms of coverage and node density. For various concerns, such as scalability, larger network sizes require some management of the large volume of data that a sensor network delivers. One way to manage this data is processing information in the network. This paper investigates how a sensor network’s network architecture (specifically, the neighborhood structure) can influence the conclusions that a sensor network makes from its measurements. The results demonstrate that non-planar structures are infeasible for routing and some in-network processing applications. Structures with low average edge lengths give better quantitative results, while those with high edge densities give better qualitative results. More... »
PAGES133-150
Geographic Information Science
ISBN
978-3-540-87472-0
978-3-540-87473-7
http://scigraph.springernature.com/pub.10.1007/978-3-540-87473-7_9
DOIhttp://dx.doi.org/10.1007/978-3-540-87473-7_9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1032872715
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Communications Technologies",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Technology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Melbourne",
"id": "https://www.grid.ac/institutes/grid.1008.9",
"name": [
"Department of Geomatics, The University of Melbourne, 3010, Victoria, Australia"
],
"type": "Organization"
},
"familyName": "Sadeq",
"givenName": "Muhammad Jafar",
"id": "sg:person.016666655321.65",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016666655321.65"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Melbourne",
"id": "https://www.grid.ac/institutes/grid.1008.9",
"name": [
"Department of Geomatics, The University of Melbourne, 3010, Victoria, Australia"
],
"type": "Organization"
},
"familyName": "Duckham",
"givenName": "Matt",
"id": "sg:person.01060220132.66",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01060220132.66"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1145/1097064.1097073",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005862561"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/1080810.1080818",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017972423"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/570738.570751",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018579220"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1021021236",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-1098-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021021236",
"https://doi.org/10.1007/978-1-4612-1098-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-1098-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021021236",
"https://doi.org/10.1007/978-1-4612-1098-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/345910.345953",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025201758"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.earscirev.2006.05.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029286457"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s1570-8705(03)00007-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035741076"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s1570-8705(03)00007-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035741076"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11502593_27",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050943474",
"https://doi.org/10.1007/11502593_27"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/11502593_27",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050943474",
"https://doi.org/10.1007/11502593_27"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1089/ees.2006.0045",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059253767"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tpds.2003.1239871",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061752719"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/mdm.2006.110",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093601323"
],
"type": "CreativeWork"
}
],
"datePublished": "2008",
"datePublishedReg": "2008-01-01",
"description": "Wireless sensor networks are growing from a few hand-placed devices to more large-scale networks in terms of coverage and node density. For various concerns, such as scalability, larger network sizes require some management of the large volume of data that a sensor network delivers. One way to manage this data is processing information in the network. This paper investigates how a sensor network\u2019s network architecture (specifically, the neighborhood structure) can influence the conclusions that a sensor network makes from its measurements. The results demonstrate that non-planar structures are infeasible for routing and some in-network processing applications. Structures with low average edge lengths give better quantitative results, while those with high edge densities give better qualitative results.",
"editor": [
{
"familyName": "Cova",
"givenName": "Thomas J.",
"type": "Person"
},
{
"familyName": "Miller",
"givenName": "Harvey J.",
"type": "Person"
},
{
"familyName": "Beard",
"givenName": "Kate",
"type": "Person"
},
{
"familyName": "Frank",
"givenName": "Andrew U.",
"type": "Person"
},
{
"familyName": "Goodchild",
"givenName": "Michael F.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-540-87473-7_9",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-540-87472-0",
"978-3-540-87473-7"
],
"name": "Geographic Information Science",
"type": "Book"
},
"name": "Effect of Neighborhood on In-Network Processing in Sensor Networks",
"pagination": "133-150",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-540-87473-7_9"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"9c9a1c64ebaea4cbfaf01263fa90f0fbdd82487296f830cc2b597b75c7e7a680"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1032872715"
]
}
],
"publisher": {
"location": "Berlin, Heidelberg",
"name": "Springer Berlin Heidelberg",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-540-87473-7_9",
"https://app.dimensions.ai/details/publication/pub.1032872715"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T06:09",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77554_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-540-87473-7_9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87473-7_9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87473-7_9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87473-7_9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87473-7_9'
This table displays all metadata directly associated to this object as RDF triples.
129 TRIPLES
23 PREDICATES
39 URIs
20 LITERALS
8 BLANK NODES