Two-Level Fusion to Improve Emotion Classification in Spoken Dialogue Systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Ramón López-Cózar , Zoraida Callejas , Martin Kroul , Jan Nouza , Jan Silovský

ABSTRACT

This paper proposes a technique to enhance emotion classification in spoken dialogue systems by means of two fusion modules. The first combines emotion predictions generated by a set of classifiers that deal with different kinds of information about each sentence uttered by the user. To do this, the module employs several fusion methods that produce other predictions about the emotional state of the user. The predictions are the input to the second fusion module, where they are combined to deduce the user’s emotional state. Experiments have been carried out considering two emotion categories (‘Non-negative’ and ‘Negative’) and classifiers that deal with prosodic, acoustic, lexical and dialogue acts information. The results show that the first fusion module significantly increases the classification rates of a baseline and the classifiers working separately, as has been observed previously in the literature. The novelty of the technique is the inclusion of the second fusion module, which enhances classification rate by 2.25% absolute. More... »

PAGES

617-624

Book

TITLE

Text, Speech and Dialogue

ISBN

978-3-540-87390-7
978-3-540-87391-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-87391-4_78

DOI

http://dx.doi.org/10.1007/978-3-540-87391-4_78

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047715079


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Granada", 
          "id": "https://www.grid.ac/institutes/grid.4489.1", 
          "name": [
            "Dept. of Languages and Computer Systems, University of Granada, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00f3pez-C\u00f3zar", 
        "givenName": "Ram\u00f3n", 
        "id": "sg:person.013113720067.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113720067.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Granada", 
          "id": "https://www.grid.ac/institutes/grid.4489.1", 
          "name": [
            "Dept. of Languages and Computer Systems, University of Granada, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Callejas", 
        "givenName": "Zoraida", 
        "id": "sg:person.016307634167.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016307634167.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Liberec", 
          "id": "https://www.grid.ac/institutes/grid.6912.c", 
          "name": [
            "Institute of Information Technology and Electronics, Technical University of Liberec, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kroul", 
        "givenName": "Martin", 
        "id": "sg:person.011056771461.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011056771461.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Liberec", 
          "id": "https://www.grid.ac/institutes/grid.6912.c", 
          "name": [
            "Institute of Information Technology and Electronics, Technical University of Liberec, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nouza", 
        "givenName": "Jan", 
        "id": "sg:person.012303147473.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303147473.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Liberec", 
          "id": "https://www.grid.ac/institutes/grid.6912.c", 
          "name": [
            "Institute of Information Technology and Electronics, Technical University of Liberec, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Silovsk\u00fd", 
        "givenName": "Jan", 
        "id": "sg:person.011136501277.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011136501277.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0031-3203(99)00138-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013586421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.specom.2006.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021697340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.specom.2005.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026042907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csl.2005.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031069149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csl.2005.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031069149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsa.2004.838534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061786254"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "This paper proposes a technique to enhance emotion classification in spoken dialogue systems by means of two fusion modules. The first combines emotion predictions generated by a set of classifiers that deal with different kinds of information about each sentence uttered by the user. To do this, the module employs several fusion methods that produce other predictions about the emotional state of the user. The predictions are the input to the second fusion module, where they are combined to deduce the user\u2019s emotional state. Experiments have been carried out considering two emotion categories (\u2018Non-negative\u2019 and \u2018Negative\u2019) and classifiers that deal with prosodic, acoustic, lexical and dialogue acts information. The results show that the first fusion module significantly increases the classification rates of a baseline and the classifiers working separately, as has been observed previously in the literature. The novelty of the technique is the inclusion of the second fusion module, which enhances classification rate by 2.25% absolute.", 
    "editor": [
      {
        "familyName": "Sojka", 
        "givenName": "Petr", 
        "type": "Person"
      }, 
      {
        "familyName": "Hor\u00e1k", 
        "givenName": "Ale\u0161", 
        "type": "Person"
      }, 
      {
        "familyName": "Kope\u010dek", 
        "givenName": "Ivan", 
        "type": "Person"
      }, 
      {
        "familyName": "Pala", 
        "givenName": "Karel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-87391-4_78", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-87390-7", 
        "978-3-540-87391-4"
      ], 
      "name": "Text, Speech and Dialogue", 
      "type": "Book"
    }, 
    "name": "Two-Level Fusion to Improve Emotion Classification in Spoken Dialogue Systems", 
    "pagination": "617-624", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-87391-4_78"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e34d78f836fa183ce754ee01f9c6025397522398193e7cf596164856a96d3c7e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047715079"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-87391-4_78", 
      "https://app.dimensions.ai/details/publication/pub.1047715079"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T06:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77567_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-87391-4_78"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87391-4_78'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87391-4_78'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87391-4_78'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-87391-4_78'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-87391-4_78 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N42fce144c0bb4ed88354a455373f8874
4 schema:citation https://doi.org/10.1016/j.csl.2005.05.003
5 https://doi.org/10.1016/j.specom.2005.02.016
6 https://doi.org/10.1016/j.specom.2006.11.004
7 https://doi.org/10.1016/s0031-3203(99)00138-7
8 https://doi.org/10.1109/tsa.2004.838534
9 schema:datePublished 2008
10 schema:datePublishedReg 2008-01-01
11 schema:description This paper proposes a technique to enhance emotion classification in spoken dialogue systems by means of two fusion modules. The first combines emotion predictions generated by a set of classifiers that deal with different kinds of information about each sentence uttered by the user. To do this, the module employs several fusion methods that produce other predictions about the emotional state of the user. The predictions are the input to the second fusion module, where they are combined to deduce the user’s emotional state. Experiments have been carried out considering two emotion categories (‘Non-negative’ and ‘Negative’) and classifiers that deal with prosodic, acoustic, lexical and dialogue acts information. The results show that the first fusion module significantly increases the classification rates of a baseline and the classifiers working separately, as has been observed previously in the literature. The novelty of the technique is the inclusion of the second fusion module, which enhances classification rate by 2.25% absolute.
12 schema:editor N1580e7bfb9a84eeb9d22fbfbbf6d4345
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Nd0354e6e7980403c8f12da7e2471f622
17 schema:name Two-Level Fusion to Improve Emotion Classification in Spoken Dialogue Systems
18 schema:pagination 617-624
19 schema:productId N3449c643179543d8991e827c9bfe9190
20 N9e8bf7eb51a940639f5fe25be63bc07d
21 Na262ba8d191349a7832df32cc4ad9484
22 schema:publisher N7267b6356e164ef8b31e783d6d63afd2
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047715079
24 https://doi.org/10.1007/978-3-540-87391-4_78
25 schema:sdDatePublished 2019-04-16T06:10
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N7e230fc10cba4ee79e14576be4ebcb69
28 schema:url https://link.springer.com/10.1007%2F978-3-540-87391-4_78
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N1580e7bfb9a84eeb9d22fbfbbf6d4345 rdf:first N4082fa71ba31496e89d55c6a2c11b338
33 rdf:rest N6fbb69d594274af983f1c475938f8769
34 N3449c643179543d8991e827c9bfe9190 schema:name dimensions_id
35 schema:value pub.1047715079
36 rdf:type schema:PropertyValue
37 N3817a086f44041f98d3447dc0c31a472 schema:familyName Horák
38 schema:givenName Aleš
39 rdf:type schema:Person
40 N4082fa71ba31496e89d55c6a2c11b338 schema:familyName Sojka
41 schema:givenName Petr
42 rdf:type schema:Person
43 N42fce144c0bb4ed88354a455373f8874 rdf:first sg:person.013113720067.02
44 rdf:rest Ne64df8ef43ac48e6a9332eb79cc75839
45 N5a98c1518b67494e8c9274196857c89b schema:familyName Pala
46 schema:givenName Karel
47 rdf:type schema:Person
48 N6c89a74c665f4b37bf5c9d6fe0ba1330 rdf:first N5a98c1518b67494e8c9274196857c89b
49 rdf:rest rdf:nil
50 N6fbb69d594274af983f1c475938f8769 rdf:first N3817a086f44041f98d3447dc0c31a472
51 rdf:rest N81b4eaba0e6b41fab153612cad3f3399
52 N7267b6356e164ef8b31e783d6d63afd2 schema:location Berlin, Heidelberg
53 schema:name Springer Berlin Heidelberg
54 rdf:type schema:Organisation
55 N7e230fc10cba4ee79e14576be4ebcb69 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N81b4eaba0e6b41fab153612cad3f3399 rdf:first Nb61aecba6bf0468ba5bf6e14eaccf0d1
58 rdf:rest N6c89a74c665f4b37bf5c9d6fe0ba1330
59 N9e8bf7eb51a940639f5fe25be63bc07d schema:name readcube_id
60 schema:value e34d78f836fa183ce754ee01f9c6025397522398193e7cf596164856a96d3c7e
61 rdf:type schema:PropertyValue
62 Na262ba8d191349a7832df32cc4ad9484 schema:name doi
63 schema:value 10.1007/978-3-540-87391-4_78
64 rdf:type schema:PropertyValue
65 Na9a29954eb0643a7ac2f3f49eb2343a2 rdf:first sg:person.011136501277.59
66 rdf:rest rdf:nil
67 Nb61aecba6bf0468ba5bf6e14eaccf0d1 schema:familyName Kopeček
68 schema:givenName Ivan
69 rdf:type schema:Person
70 Nbd8b668da4fd419fae07bd8f2b1cea0a rdf:first sg:person.012303147473.22
71 rdf:rest Na9a29954eb0643a7ac2f3f49eb2343a2
72 Nd0354e6e7980403c8f12da7e2471f622 schema:isbn 978-3-540-87390-7
73 978-3-540-87391-4
74 schema:name Text, Speech and Dialogue
75 rdf:type schema:Book
76 Ne64df8ef43ac48e6a9332eb79cc75839 rdf:first sg:person.016307634167.10
77 rdf:rest Neec2e3cc5a4b4ecc9e56836460e30646
78 Neec2e3cc5a4b4ecc9e56836460e30646 rdf:first sg:person.011056771461.40
79 rdf:rest Nbd8b668da4fd419fae07bd8f2b1cea0a
80 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
81 schema:name Psychology and Cognitive Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
84 schema:name Psychology
85 rdf:type schema:DefinedTerm
86 sg:person.011056771461.40 schema:affiliation https://www.grid.ac/institutes/grid.6912.c
87 schema:familyName Kroul
88 schema:givenName Martin
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011056771461.40
90 rdf:type schema:Person
91 sg:person.011136501277.59 schema:affiliation https://www.grid.ac/institutes/grid.6912.c
92 schema:familyName Silovský
93 schema:givenName Jan
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011136501277.59
95 rdf:type schema:Person
96 sg:person.012303147473.22 schema:affiliation https://www.grid.ac/institutes/grid.6912.c
97 schema:familyName Nouza
98 schema:givenName Jan
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303147473.22
100 rdf:type schema:Person
101 sg:person.013113720067.02 schema:affiliation https://www.grid.ac/institutes/grid.4489.1
102 schema:familyName López-Cózar
103 schema:givenName Ramón
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113720067.02
105 rdf:type schema:Person
106 sg:person.016307634167.10 schema:affiliation https://www.grid.ac/institutes/grid.4489.1
107 schema:familyName Callejas
108 schema:givenName Zoraida
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016307634167.10
110 rdf:type schema:Person
111 https://doi.org/10.1016/j.csl.2005.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031069149
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.specom.2005.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026042907
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.specom.2006.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021697340
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0031-3203(99)00138-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013586421
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/tsa.2004.838534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061786254
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.4489.1 schema:alternateName University of Granada
122 schema:name Dept. of Languages and Computer Systems, University of Granada, Spain
123 rdf:type schema:Organization
124 https://www.grid.ac/institutes/grid.6912.c schema:alternateName Technical University of Liberec
125 schema:name Institute of Information Technology and Electronics, Technical University of Liberec, Czech Republic
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...