Dynamic Model-Driven Quantitative and Visual Evaluation of the Aortic Valve from 4D CT View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2008

AUTHORS

Razvan Ioan Ionasec , Bogdan Georgescu , Eva Gassner , Sebastian Vogt , Oliver Kutter , Michael Scheuering , Nassir Navab , Dorin Comaniciu

ABSTRACT

Aortic valve disease is an important cardio-vascular disorder, which affects 2.5% of the global population and often requires elaborate clinical management. Experts agree that visual and quantitative evaluation of the valve, crucial throughout the clinical workflow, is currently limited to 2D imaging which can potentially yield inaccurate measurements. In this paper, we propose a novel approach for morphological and functional quantification of the aortic valve based on a 4D model estimated from computed tomography data. A physiological model of the aortic valve, capable to express large shape variations, is generated using parametric splines together with anatomically-driven topological and geometrical constraints. Recent advances in discriminative learning and incremental searching methods allow rapid estimation of the model parameters from 4D Cardiac CT specifically for each patient. The proposed approach enables precise valve evaluation with model-based dynamic measurements and advanced visualization. Extensive experiments and initial clinical validation demonstrate the efficiency and accuracy of the proposed approach. To the best of our knowledge this is the first time such a patient specific 4D aortic valve model is proposed. More... »

PAGES

686-694

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-85988-8_82

DOI

http://dx.doi.org/10.1007/978-3-540-85988-8_82

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036506109

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18979806


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aortic Valve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Graphics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Cardiovascular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "User-Computer Interface", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Aided Medical Procedures, Technical University Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
            "Computer Aided Medical Procedures, Technical University Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ionasec", 
        "givenName": "Razvan Ioan", 
        "id": "sg:person.01010560470.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgescu", 
        "givenName": "Bogdan", 
        "id": "sg:person.0703547214.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Medical University of South Carolina, Charleston, USA", 
          "id": "http://www.grid.ac/institutes/grid.259828.c", 
          "name": [
            "Department of Radiology, Medical University of South Carolina, Charleston, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gassner", 
        "givenName": "Eva", 
        "id": "sg:person.01302026247.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302026247.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Medical Solutions, Computed Tomography, Forchheim, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Siemens Medical Solutions, Computed Tomography, Forchheim, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vogt", 
        "givenName": "Sebastian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Aided Medical Procedures, Technical University Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Computer Aided Medical Procedures, Technical University Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kutter", 
        "givenName": "Oliver", 
        "id": "sg:person.01241755165.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241755165.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens Medical Solutions, Computed Tomography, Forchheim, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Siemens Medical Solutions, Computed Tomography, Forchheim, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scheuering", 
        "givenName": "Michael", 
        "id": "sg:person.07564167251.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07564167251.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Aided Medical Procedures, Technical University Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Computer Aided Medical Procedures, Technical University Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Navab", 
        "givenName": "Nassir", 
        "id": "sg:person.01275015030.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275015030.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Integrated Data Systems, Siemens Corporate Research, Princeton, USA", 
          "id": "http://www.grid.ac/institutes/grid.419233.e", 
          "name": [
            "Integrated Data Systems, Siemens Corporate Research, Princeton, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Comaniciu", 
        "givenName": "Dorin", 
        "id": "sg:person.01066111014.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "Aortic valve disease is an important cardio-vascular disorder, which affects 2.5% of the global population and often requires elaborate clinical management. Experts agree that visual and quantitative evaluation of the valve, crucial throughout the clinical workflow, is currently limited to 2D imaging which can potentially yield inaccurate measurements. In this paper, we propose a novel approach for morphological and functional quantification of the aortic valve based on a 4D model estimated from computed tomography data. A physiological model of the aortic valve, capable to express large shape variations, is generated using parametric splines together with anatomically-driven topological and geometrical constraints. Recent advances in discriminative learning and incremental searching methods allow rapid estimation of the model parameters from 4D Cardiac CT specifically for each patient. The proposed approach enables precise valve evaluation with model-based dynamic measurements and advanced visualization. Extensive experiments and initial clinical validation demonstrate the efficiency and accuracy of the proposed approach. To the best of our knowledge this is the first time such a patient specific 4D aortic valve model is proposed.", 
    "editor": [
      {
        "familyName": "Metaxas", 
        "givenName": "Dimitris", 
        "type": "Person"
      }, 
      {
        "familyName": "Axel", 
        "givenName": "Leon", 
        "type": "Person"
      }, 
      {
        "familyName": "Fichtinger", 
        "givenName": "Gabor", 
        "type": "Person"
      }, 
      {
        "familyName": "Sz\u00e9kely", 
        "givenName": "G\u00e1bor", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-85988-8_82", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-85987-1", 
        "978-3-540-85988-8"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2008", 
      "type": "Book"
    }, 
    "keywords": [
      "aortic valve", 
      "cardio-vascular disorders", 
      "aortic valve disease", 
      "initial clinical validation", 
      "valve disease", 
      "clinical management", 
      "cardiac CT", 
      "valve evaluation", 
      "clinical validation", 
      "aortic valve model", 
      "computed tomography data", 
      "functional quantification", 
      "CT", 
      "clinical workflow", 
      "valve", 
      "patients", 
      "visual evaluation", 
      "tomography data", 
      "disease", 
      "evaluation", 
      "disorders", 
      "physiological model", 
      "recent advances", 
      "global population", 
      "imaging", 
      "population", 
      "valve model", 
      "quantitative evaluation", 
      "management", 
      "large shape variations", 
      "inaccurate measurements", 
      "Extensive experiments", 
      "advanced visualization", 
      "quantitative", 
      "first time", 
      "discriminative learning", 
      "advances", 
      "searching method", 
      "novel approach", 
      "data", 
      "time", 
      "knowledge", 
      "model", 
      "parametric splines", 
      "quantification", 
      "measurements", 
      "geometrical constraints", 
      "visualization", 
      "experts", 
      "approach", 
      "validation", 
      "workflow", 
      "method", 
      "shape variation", 
      "model parameters", 
      "learning", 
      "parameters", 
      "constraints", 
      "variation", 
      "accuracy", 
      "estimation", 
      "splines", 
      "dynamic measurements", 
      "experiments", 
      "efficiency", 
      "rapid estimation", 
      "paper", 
      "important cardio-vascular disorder", 
      "elaborate clinical management", 
      "incremental searching methods", 
      "precise valve evaluation", 
      "model-based dynamic measurements", 
      "patient specific 4D aortic valve model", 
      "specific 4D aortic valve model", 
      "Dynamic Model-Driven Quantitative", 
      "Model-Driven Quantitative"
    ], 
    "name": "Dynamic Model-Driven Quantitative and Visual Evaluation of the Aortic Valve from 4D CT", 
    "pagination": "686-694", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036506109"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-85988-8_82"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18979806"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-85988-8_82", 
      "https://app.dimensions.ai/details/publication/pub.1036506109"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_48.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-85988-8_82"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-85988-8_82'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-85988-8_82'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-85988-8_82'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-85988-8_82'


 

This table displays all metadata directly associated to this object as RDF triples.

265 TRIPLES      23 PREDICATES      116 URIs      109 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-85988-8_82 schema:about N03a91410b3b14ca09507a9b1b364866f
2 N0a5c1fd76789450f886d09318aba82e8
3 N45db799693a74092b1f7cb21d2e15b6a
4 N50164d207bfd4cbf8767d4f198e7db72
5 N6020fdaf0221468abe056d42dbccb3ec
6 N6822ac02f8264cb3807acb1b795a33b7
7 N7dd6d570a3ad42b78e5237f2c9990b23
8 N84765d09bd0049e9a8ab8341d3bfe450
9 N9323d9b3de6e487da566e876ac42ff95
10 N9c2869a4fd124ad8871bbdd0b6a4a45c
11 N9ef8e5665d7644a09cfb45293478a494
12 Nd751ae07ae044064a00c6b8deb673ee3
13 Neb54bcf255cd423cb2789b400b6f675c
14 anzsrc-for:08
15 anzsrc-for:0801
16 schema:author N409aa8999b4a49908d434f1485511d56
17 schema:datePublished 2008
18 schema:datePublishedReg 2008-01-01
19 schema:description Aortic valve disease is an important cardio-vascular disorder, which affects 2.5% of the global population and often requires elaborate clinical management. Experts agree that visual and quantitative evaluation of the valve, crucial throughout the clinical workflow, is currently limited to 2D imaging which can potentially yield inaccurate measurements. In this paper, we propose a novel approach for morphological and functional quantification of the aortic valve based on a 4D model estimated from computed tomography data. A physiological model of the aortic valve, capable to express large shape variations, is generated using parametric splines together with anatomically-driven topological and geometrical constraints. Recent advances in discriminative learning and incremental searching methods allow rapid estimation of the model parameters from 4D Cardiac CT specifically for each patient. The proposed approach enables precise valve evaluation with model-based dynamic measurements and advanced visualization. Extensive experiments and initial clinical validation demonstrate the efficiency and accuracy of the proposed approach. To the best of our knowledge this is the first time such a patient specific 4D aortic valve model is proposed.
20 schema:editor N2dd96988dea945069aa65a3a29f21fc9
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N60de964dfdca447986cf95b4a37a9879
25 schema:keywords CT
26 Dynamic Model-Driven Quantitative
27 Extensive experiments
28 Model-Driven Quantitative
29 accuracy
30 advanced visualization
31 advances
32 aortic valve
33 aortic valve disease
34 aortic valve model
35 approach
36 cardiac CT
37 cardio-vascular disorders
38 clinical management
39 clinical validation
40 clinical workflow
41 computed tomography data
42 constraints
43 data
44 discriminative learning
45 disease
46 disorders
47 dynamic measurements
48 efficiency
49 elaborate clinical management
50 estimation
51 evaluation
52 experiments
53 experts
54 first time
55 functional quantification
56 geometrical constraints
57 global population
58 imaging
59 important cardio-vascular disorder
60 inaccurate measurements
61 incremental searching methods
62 initial clinical validation
63 knowledge
64 large shape variations
65 learning
66 management
67 measurements
68 method
69 model
70 model parameters
71 model-based dynamic measurements
72 novel approach
73 paper
74 parameters
75 parametric splines
76 patient specific 4D aortic valve model
77 patients
78 physiological model
79 population
80 precise valve evaluation
81 quantification
82 quantitative
83 quantitative evaluation
84 rapid estimation
85 recent advances
86 searching method
87 shape variation
88 specific 4D aortic valve model
89 splines
90 time
91 tomography data
92 validation
93 valve
94 valve disease
95 valve evaluation
96 valve model
97 variation
98 visual evaluation
99 visualization
100 workflow
101 schema:name Dynamic Model-Driven Quantitative and Visual Evaluation of the Aortic Valve from 4D CT
102 schema:pagination 686-694
103 schema:productId N06c7f8670e274c06918787459fdb25ee
104 N6ec574a7bf3e41838838a72c8d63fc24
105 N7d150edc2b8b4223affcf944e8a05c8f
106 schema:publisher N0e1d566252914c60b81bf0e6c90f0059
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036506109
108 https://doi.org/10.1007/978-3-540-85988-8_82
109 schema:sdDatePublished 2022-01-01T19:26
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher N527bb313543846ee91ec231d01b9e845
112 schema:url https://doi.org/10.1007/978-3-540-85988-8_82
113 sgo:license sg:explorer/license/
114 sgo:sdDataset chapters
115 rdf:type schema:Chapter
116 N03a91410b3b14ca09507a9b1b364866f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Radiographic Image Enhancement
118 rdf:type schema:DefinedTerm
119 N06c7f8670e274c06918787459fdb25ee schema:name pubmed_id
120 schema:value 18979806
121 rdf:type schema:PropertyValue
122 N0a5c1fd76789450f886d09318aba82e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Aortic Valve
124 rdf:type schema:DefinedTerm
125 N0aafa89844844624bda7aadf5564a5b9 schema:familyName Axel
126 schema:givenName Leon
127 rdf:type schema:Person
128 N0e1d566252914c60b81bf0e6c90f0059 schema:name Springer Nature
129 rdf:type schema:Organisation
130 N13958950c3f7468b8c108dabd7ad9856 rdf:first sg:person.07564167251.00
131 rdf:rest N7806df7f626447dc9d47aa507749c0e3
132 N1612cfa364814864bfe95bf470d3ea51 rdf:first sg:person.0703547214.37
133 rdf:rest Nf48e9315bc8a490c8f730ad232360ed6
134 N27e0c173b3ae4c74bcdcf0b5b7398f2a schema:affiliation grid-institutes:None
135 schema:familyName Vogt
136 schema:givenName Sebastian
137 rdf:type schema:Person
138 N2c3adf337ce4400d8a91c2705d10187f rdf:first sg:person.01066111014.77
139 rdf:rest rdf:nil
140 N2dd96988dea945069aa65a3a29f21fc9 rdf:first N6665322044204c24bdad17cd2f959148
141 rdf:rest Nab0ad0651f724e77b1d2e13a76a03d94
142 N409aa8999b4a49908d434f1485511d56 rdf:first sg:person.01010560470.38
143 rdf:rest N1612cfa364814864bfe95bf470d3ea51
144 N41ffafe29dba45af8c1a9e795479a62b rdf:first N27e0c173b3ae4c74bcdcf0b5b7398f2a
145 rdf:rest Nf03b05afa2834936875d26c322612bbc
146 N45daa33e5c1c4460bad3d08e26a27ec2 schema:familyName Fichtinger
147 schema:givenName Gabor
148 rdf:type schema:Person
149 N45db799693a74092b1f7cb21d2e15b6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Algorithms
151 rdf:type schema:DefinedTerm
152 N50164d207bfd4cbf8767d4f198e7db72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Radiographic Image Interpretation, Computer-Assisted
154 rdf:type schema:DefinedTerm
155 N527bb313543846ee91ec231d01b9e845 schema:name Springer Nature - SN SciGraph project
156 rdf:type schema:Organization
157 N6020fdaf0221468abe056d42dbccb3ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Humans
159 rdf:type schema:DefinedTerm
160 N60de964dfdca447986cf95b4a37a9879 schema:isbn 978-3-540-85987-1
161 978-3-540-85988-8
162 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008
163 rdf:type schema:Book
164 N6665322044204c24bdad17cd2f959148 schema:familyName Metaxas
165 schema:givenName Dimitris
166 rdf:type schema:Person
167 N6822ac02f8264cb3807acb1b795a33b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Sensitivity and Specificity
169 rdf:type schema:DefinedTerm
170 N6ec574a7bf3e41838838a72c8d63fc24 schema:name dimensions_id
171 schema:value pub.1036506109
172 rdf:type schema:PropertyValue
173 N6f3cb10cabae4190a359c98aa33dd463 rdf:first Nc74a277bcede4267bba8d1768cd1c354
174 rdf:rest rdf:nil
175 N7806df7f626447dc9d47aa507749c0e3 rdf:first sg:person.01275015030.20
176 rdf:rest N2c3adf337ce4400d8a91c2705d10187f
177 N7d150edc2b8b4223affcf944e8a05c8f schema:name doi
178 schema:value 10.1007/978-3-540-85988-8_82
179 rdf:type schema:PropertyValue
180 N7dd6d570a3ad42b78e5237f2c9990b23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Computer Graphics
182 rdf:type schema:DefinedTerm
183 N84765d09bd0049e9a8ab8341d3bfe450 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Imaging, Three-Dimensional
185 rdf:type schema:DefinedTerm
186 N9323d9b3de6e487da566e876ac42ff95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Computer Simulation
188 rdf:type schema:DefinedTerm
189 N9639a58fbd3946acaa46b51c1a64b565 rdf:first N45daa33e5c1c4460bad3d08e26a27ec2
190 rdf:rest N6f3cb10cabae4190a359c98aa33dd463
191 N9c2869a4fd124ad8871bbdd0b6a4a45c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name User-Computer Interface
193 rdf:type schema:DefinedTerm
194 N9ef8e5665d7644a09cfb45293478a494 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Reproducibility of Results
196 rdf:type schema:DefinedTerm
197 Nab0ad0651f724e77b1d2e13a76a03d94 rdf:first N0aafa89844844624bda7aadf5564a5b9
198 rdf:rest N9639a58fbd3946acaa46b51c1a64b565
199 Nc74a277bcede4267bba8d1768cd1c354 schema:familyName Székely
200 schema:givenName Gábor
201 rdf:type schema:Person
202 Nd751ae07ae044064a00c6b8deb673ee3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Tomography, X-Ray Computed
204 rdf:type schema:DefinedTerm
205 Neb54bcf255cd423cb2789b400b6f675c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Models, Cardiovascular
207 rdf:type schema:DefinedTerm
208 Nf03b05afa2834936875d26c322612bbc rdf:first sg:person.01241755165.75
209 rdf:rest N13958950c3f7468b8c108dabd7ad9856
210 Nf48e9315bc8a490c8f730ad232360ed6 rdf:first sg:person.01302026247.41
211 rdf:rest N41ffafe29dba45af8c1a9e795479a62b
212 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
213 schema:name Information and Computing Sciences
214 rdf:type schema:DefinedTerm
215 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
216 schema:name Artificial Intelligence and Image Processing
217 rdf:type schema:DefinedTerm
218 sg:person.01010560470.38 schema:affiliation grid-institutes:grid.6936.a
219 schema:familyName Ionasec
220 schema:givenName Razvan Ioan
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010560470.38
222 rdf:type schema:Person
223 sg:person.01066111014.77 schema:affiliation grid-institutes:grid.419233.e
224 schema:familyName Comaniciu
225 schema:givenName Dorin
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066111014.77
227 rdf:type schema:Person
228 sg:person.01241755165.75 schema:affiliation grid-institutes:grid.6936.a
229 schema:familyName Kutter
230 schema:givenName Oliver
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241755165.75
232 rdf:type schema:Person
233 sg:person.01275015030.20 schema:affiliation grid-institutes:grid.6936.a
234 schema:familyName Navab
235 schema:givenName Nassir
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275015030.20
237 rdf:type schema:Person
238 sg:person.01302026247.41 schema:affiliation grid-institutes:grid.259828.c
239 schema:familyName Gassner
240 schema:givenName Eva
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302026247.41
242 rdf:type schema:Person
243 sg:person.0703547214.37 schema:affiliation grid-institutes:grid.419233.e
244 schema:familyName Georgescu
245 schema:givenName Bogdan
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703547214.37
247 rdf:type schema:Person
248 sg:person.07564167251.00 schema:affiliation grid-institutes:None
249 schema:familyName Scheuering
250 schema:givenName Michael
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07564167251.00
252 rdf:type schema:Person
253 grid-institutes:None schema:alternateName Siemens Medical Solutions, Computed Tomography, Forchheim, Germany
254 schema:name Siemens Medical Solutions, Computed Tomography, Forchheim, Germany
255 rdf:type schema:Organization
256 grid-institutes:grid.259828.c schema:alternateName Department of Radiology, Medical University of South Carolina, Charleston, USA
257 schema:name Department of Radiology, Medical University of South Carolina, Charleston, USA
258 rdf:type schema:Organization
259 grid-institutes:grid.419233.e schema:alternateName Integrated Data Systems, Siemens Corporate Research, Princeton, USA
260 schema:name Integrated Data Systems, Siemens Corporate Research, Princeton, USA
261 rdf:type schema:Organization
262 grid-institutes:grid.6936.a schema:alternateName Computer Aided Medical Procedures, Technical University Munich, Germany
263 schema:name Computer Aided Medical Procedures, Technical University Munich, Germany
264 Integrated Data Systems, Siemens Corporate Research, Princeton, USA
265 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...