Web-Based Measure of Semantic Relatedness View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2008

AUTHORS

Jorge Gracia , Eduardo Mena

ABSTRACT

Semantic relatedness measures quantify the degree in which some words or concepts are related, considering not only similarity but any possible semantic relationship among them. Relatedness computation is of great interest in different areas, such as Natural Language Processing, Information Retrieval, or the Semantic Web. Different methods have been proposed in the past; however, current relatedness measures lack some desirable properties for a new generation of Semantic Web applications: maximum coverage, domain independence, and universality. In this paper, we explore the use of a semantic relatedness measure between words, that uses the Web as knowledge source. This measure exploits the information about frequencies of use provided by existing search engines. Furthermore, taking this measure as basis, we define a new semantic relatedness measure among ontology terms. The proposed measure fulfils the above mentioned desirable properties to be used on the Semantic Web. We have tested extensively this semantic measure to show that it correlates well with human judgment, and helps solving some particular tasks, as word sense disambiguation or ontology matching. More... »

PAGES

136-150

Book

TITLE

Web Information Systems Engineering - WISE 2008

ISBN

978-3-540-85480-7
978-3-540-85481-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-85481-4_12

DOI

http://dx.doi.org/10.1007/978-3-540-85481-4_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036267710


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Zaragoza", 
          "id": "https://www.grid.ac/institutes/grid.11205.37", 
          "name": [
            "IIS Department, Univ. of Zaragoza, Mar\u00eda de Luna 1, 50018\u00a0Zaragoza, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gracia", 
        "givenName": "Jorge", 
        "id": "sg:person.014421565762.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421565762.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Zaragoza", 
          "id": "https://www.grid.ac/institutes/grid.11205.37", 
          "name": [
            "IIS Department, Univ. of Zaragoza, Mar\u00eda de Luna 1, 50018\u00a0Zaragoza, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mena", 
        "givenName": "Eduardo", 
        "id": "sg:person.011214420055.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011214420055.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/11836025_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000224844", 
          "https://doi.org/10.1007/11836025_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11836025_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000224844", 
          "https://doi.org/10.1007/11836025_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-76298-0_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011341164", 
          "https://doi.org/10.1007/978-3-540-76298-0_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-76298-0_31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011341164", 
          "https://doi.org/10.1007/978-3-540-76298-0_31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1135777.1135834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014998074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/coli.2006.32.1.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042269921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1242572.1242675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044692788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-72667-8_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044969427", 
          "https://doi.org/10.1007/978-3-540-72667-8_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-45218-8_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047702051", 
          "https://doi.org/10.1007/978-3-540-45218-8_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089120103322711569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048188896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1145581.1145630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052933065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0501-34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056527616", 
          "https://doi.org/10.1038/scientificamerican0501-34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2007.48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661815"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "Semantic relatedness measures quantify the degree in which some words or concepts are related, considering not only similarity but any possible semantic relationship among them. Relatedness computation is of great interest in different areas, such as Natural Language Processing, Information Retrieval, or the Semantic Web. Different methods have been proposed in the past; however, current relatedness measures lack some desirable properties for a new generation of Semantic Web applications: maximum coverage, domain independence, and universality. In this paper, we explore the use of a semantic relatedness measure between words, that uses the Web as knowledge source. This measure exploits the information about frequencies of use provided by existing search engines. Furthermore, taking this measure as basis, we define a new semantic relatedness measure among ontology terms. The proposed measure fulfils the above mentioned desirable properties to be used on the Semantic Web. We have tested extensively this semantic measure to show that it correlates well with human judgment, and helps solving some particular tasks, as word sense disambiguation or ontology matching.", 
    "editor": [
      {
        "familyName": "Bailey", 
        "givenName": "James", 
        "type": "Person"
      }, 
      {
        "familyName": "Maier", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "familyName": "Schewe", 
        "givenName": "Klaus-Dieter", 
        "type": "Person"
      }, 
      {
        "familyName": "Thalheim", 
        "givenName": "Bernhard", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "Xiaoyang Sean", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-85481-4_12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-85480-7", 
        "978-3-540-85481-4"
      ], 
      "name": "Web Information Systems Engineering - WISE 2008", 
      "type": "Book"
    }, 
    "name": "Web-Based Measure of Semantic Relatedness", 
    "pagination": "136-150", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-85481-4_12"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "acc3a17b34c9d9e4fa003c65c54f39e808ad0d4c79b5bfa5d81672a316a5b089"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036267710"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-85481-4_12", 
      "https://app.dimensions.ai/details/publication/pub.1036267710"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000265.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-540-85481-4_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-85481-4_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-85481-4_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-85481-4_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-85481-4_12'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-85481-4_12 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nf2b9db6c31ba4eb2b5d756547054407d
4 schema:citation sg:pub.10.1007/11836025_3
5 sg:pub.10.1007/978-3-540-45218-8_4
6 sg:pub.10.1007/978-3-540-72667-8_32
7 sg:pub.10.1007/978-3-540-76298-0_31
8 sg:pub.10.1038/scientificamerican0501-34
9 https://doi.org/10.1109/tkde.2007.48
10 https://doi.org/10.1145/1135777.1135834
11 https://doi.org/10.1145/1145581.1145630
12 https://doi.org/10.1145/1242572.1242675
13 https://doi.org/10.1162/089120103322711569
14 https://doi.org/10.1162/coli.2006.32.1.13
15 schema:datePublished 2008
16 schema:datePublishedReg 2008-01-01
17 schema:description Semantic relatedness measures quantify the degree in which some words or concepts are related, considering not only similarity but any possible semantic relationship among them. Relatedness computation is of great interest in different areas, such as Natural Language Processing, Information Retrieval, or the Semantic Web. Different methods have been proposed in the past; however, current relatedness measures lack some desirable properties for a new generation of Semantic Web applications: maximum coverage, domain independence, and universality. In this paper, we explore the use of a semantic relatedness measure between words, that uses the Web as knowledge source. This measure exploits the information about frequencies of use provided by existing search engines. Furthermore, taking this measure as basis, we define a new semantic relatedness measure among ontology terms. The proposed measure fulfils the above mentioned desirable properties to be used on the Semantic Web. We have tested extensively this semantic measure to show that it correlates well with human judgment, and helps solving some particular tasks, as word sense disambiguation or ontology matching.
18 schema:editor N5d37ae7fa32c4979b24a7251e1709cbf
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf Ned0caff2bf5446e5a80e7aaa9107885a
23 schema:name Web-Based Measure of Semantic Relatedness
24 schema:pagination 136-150
25 schema:productId N22db3c6567a34741946c9014a3d6188c
26 N562e1d48e6444d4a83e3103bccabb3c9
27 N5e64c365b3a744a7b894695a6f977ad2
28 schema:publisher N745b169b1a4d4163a75617f56dd46305
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036267710
30 https://doi.org/10.1007/978-3-540-85481-4_12
31 schema:sdDatePublished 2019-04-15T13:29
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Ncb6a26fa949e40e598f9433645e67ddf
34 schema:url http://link.springer.com/10.1007/978-3-540-85481-4_12
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N08521156d22446fcb8af306f0ebc0f1d schema:familyName Thalheim
39 schema:givenName Bernhard
40 rdf:type schema:Person
41 N22db3c6567a34741946c9014a3d6188c schema:name doi
42 schema:value 10.1007/978-3-540-85481-4_12
43 rdf:type schema:PropertyValue
44 N3256615ddd72414186552f55a63cc3a0 rdf:first Na8f77ab2bd26412f9e876156574a0517
45 rdf:rest rdf:nil
46 N330f475358134c05973b8e00ec7fcea6 schema:familyName Schewe
47 schema:givenName Klaus-Dieter
48 rdf:type schema:Person
49 N45a48964310441b8aa15bcc661e11737 rdf:first sg:person.011214420055.02
50 rdf:rest rdf:nil
51 N4e4d7938a54347f79a1f3955a6e53962 rdf:first N08521156d22446fcb8af306f0ebc0f1d
52 rdf:rest N3256615ddd72414186552f55a63cc3a0
53 N51bd5f1274df42b9b400b0adf94cbc19 schema:familyName Maier
54 schema:givenName David
55 rdf:type schema:Person
56 N562e1d48e6444d4a83e3103bccabb3c9 schema:name readcube_id
57 schema:value acc3a17b34c9d9e4fa003c65c54f39e808ad0d4c79b5bfa5d81672a316a5b089
58 rdf:type schema:PropertyValue
59 N5d37ae7fa32c4979b24a7251e1709cbf rdf:first N86c4f48a79b6483b9a49f7870cc3a9d9
60 rdf:rest N7764a7578fca498db104696a99d52369
61 N5e64c365b3a744a7b894695a6f977ad2 schema:name dimensions_id
62 schema:value pub.1036267710
63 rdf:type schema:PropertyValue
64 N745b169b1a4d4163a75617f56dd46305 schema:location Berlin, Heidelberg
65 schema:name Springer Berlin Heidelberg
66 rdf:type schema:Organisation
67 N7764a7578fca498db104696a99d52369 rdf:first N51bd5f1274df42b9b400b0adf94cbc19
68 rdf:rest Nff80508e15344f1493886f805274f1ed
69 N86c4f48a79b6483b9a49f7870cc3a9d9 schema:familyName Bailey
70 schema:givenName James
71 rdf:type schema:Person
72 Na8f77ab2bd26412f9e876156574a0517 schema:familyName Wang
73 schema:givenName Xiaoyang Sean
74 rdf:type schema:Person
75 Ncb6a26fa949e40e598f9433645e67ddf schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Ned0caff2bf5446e5a80e7aaa9107885a schema:isbn 978-3-540-85480-7
78 978-3-540-85481-4
79 schema:name Web Information Systems Engineering - WISE 2008
80 rdf:type schema:Book
81 Nf2b9db6c31ba4eb2b5d756547054407d rdf:first sg:person.014421565762.16
82 rdf:rest N45a48964310441b8aa15bcc661e11737
83 Nff80508e15344f1493886f805274f1ed rdf:first N330f475358134c05973b8e00ec7fcea6
84 rdf:rest N4e4d7938a54347f79a1f3955a6e53962
85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
86 schema:name Information and Computing Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
89 schema:name Information Systems
90 rdf:type schema:DefinedTerm
91 sg:person.011214420055.02 schema:affiliation https://www.grid.ac/institutes/grid.11205.37
92 schema:familyName Mena
93 schema:givenName Eduardo
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011214420055.02
95 rdf:type schema:Person
96 sg:person.014421565762.16 schema:affiliation https://www.grid.ac/institutes/grid.11205.37
97 schema:familyName Gracia
98 schema:givenName Jorge
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421565762.16
100 rdf:type schema:Person
101 sg:pub.10.1007/11836025_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000224844
102 https://doi.org/10.1007/11836025_3
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/978-3-540-45218-8_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047702051
105 https://doi.org/10.1007/978-3-540-45218-8_4
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/978-3-540-72667-8_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044969427
108 https://doi.org/10.1007/978-3-540-72667-8_32
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/978-3-540-76298-0_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011341164
111 https://doi.org/10.1007/978-3-540-76298-0_31
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/scientificamerican0501-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056527616
114 https://doi.org/10.1038/scientificamerican0501-34
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/tkde.2007.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661815
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1145/1135777.1135834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014998074
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1145/1145581.1145630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052933065
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1145/1242572.1242675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044692788
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1162/089120103322711569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048188896
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1162/coli.2006.32.1.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042269921
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.11205.37 schema:alternateName University of Zaragoza
129 schema:name IIS Department, Univ. of Zaragoza, María de Luna 1, 50018 Zaragoza, Spain
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...