A Surface-Based Fractal Information Dimension Method for Cortical Complexity Analysis View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Yuanchao Zhang , Jiefeng Jiang , Lei Lin , Feng Shi , Yuan Zhou , Chunshui Yu , Kuncheng Li , Tianzi Jiang

ABSTRACT

In this paper, we proposed a new surface-based fractal information dimension (FID) method to quantify the cortical complexity. Unlike the traditional box-counting method to measure the capacity dimension, our method is a surface-based fractal information dimension method, which incorporates surface area into the probability calculation and thus encapsulates more information of the original cortical surfaces. The accuracy of the algorithm was validated via experiments on phantoms. With the proposed method, we studied the abnormalities of the cortical complexity of the early blind (EB; n=15), compared with matched controls (n=15). We found significantly increased FIDs in the left occipital lobe and decreased FIDs in the right frontal and right parietal lobe in early blind compared with controls. The results demonstrated the potential of the proposed method for identifying cortical abnormalities. More... »

PAGES

133-141

References to SciGraph publications

  • 2004-08. Gender differences in cortical complexity in NATURE NEUROSCIENCE
  • 1988-11. The human pattern of gyrification in the cerebral cortex in BRAIN STRUCTURE AND FUNCTION
  • Book

    TITLE

    Medical Imaging and Augmented Reality

    ISBN

    978-3-540-79981-8
    978-3-540-79982-5

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-540-79982-5_15

    DOI

    http://dx.doi.org/10.1007/978-3-540-79982-5_15

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045966986


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Zhejiang University", 
              "id": "https://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "Department of Mathematics, Zhejiang University, Hangzhou, 310027, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Yuanchao", 
            "id": "sg:person.01321515600.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321515600.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Automation", 
              "id": "https://www.grid.ac/institutes/grid.429126.a", 
              "name": [
                "National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiang", 
            "givenName": "Jiefeng", 
            "id": "sg:person.01270160233.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270160233.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zhejiang University", 
              "id": "https://www.grid.ac/institutes/grid.13402.34", 
              "name": [
                "Department of Mathematics, Zhejiang University, Hangzhou, 310027, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Lei", 
            "id": "sg:person.01263556141.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263556141.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Automation", 
              "id": "https://www.grid.ac/institutes/grid.429126.a", 
              "name": [
                "National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shi", 
            "givenName": "Feng", 
            "id": "sg:person.01075540276.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075540276.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Automation", 
              "id": "https://www.grid.ac/institutes/grid.429126.a", 
              "name": [
                "National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Yuan", 
            "id": "sg:person.0606265241.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606265241.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xuan Wu Hospital of the Capital Medical University", 
              "id": "https://www.grid.ac/institutes/grid.413259.8", 
              "name": [
                "Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Chunshui", 
            "id": "sg:person.0632640575.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632640575.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xuan Wu Hospital of the Capital Medical University", 
              "id": "https://www.grid.ac/institutes/grid.413259.8", 
              "name": [
                "Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Kuncheng", 
            "id": "sg:person.01326527402.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Automation", 
              "id": "https://www.grid.ac/institutes/grid.429126.a", 
              "name": [
                "National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiang", 
            "givenName": "Tianzi", 
            "id": "sg:person.0606563443.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606563443.87"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/brain/awm121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000556495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/cercor/6.6.830", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000617776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jneumeth.2005.06.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003874201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jneumeth.2005.06.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003874201"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jns.2004.06.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007455837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1460-9568.2004.03630.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010819467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/hbm.20238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013397768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neulet.2005.04.078", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013841286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn1277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015266205", 
              "https://doi.org/10.1038/nn1277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn1277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015266205", 
              "https://doi.org/10.1038/nn1277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1096-9861(19960325)367:1<70::aid-cne6>3.0.co;2-g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017262510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2007.03.057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031237476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/nimg.1998.0396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033845535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neurobiolaging.2006.06.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040069221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biopsych.2003.12.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040737368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1159/000117155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041018027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0925-4927(01)00091-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043070730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2005.08.049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045609215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2005.08.049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045609215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cub.2005.06.053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046906192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cub.2005.06.053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046906192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.0165-05.2005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048822180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00304699", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049317811", 
              "https://doi.org/10.1007/bf00304699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00304699", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049317811", 
              "https://doi.org/10.1007/bf00304699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2007.903576", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051606538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1053-8119(03)00380-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052473159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1053-8119(03)00380-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052473159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2007.05.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052501323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/nimg.1998.0395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053140737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0033291700027926", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053922257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0033291700027926", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053922257"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tbme.2004.831543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061526216"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.16-13-04261.1996", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082938463"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008", 
        "datePublishedReg": "2008-01-01", 
        "description": "In this paper, we proposed a new surface-based fractal information dimension (FID) method to quantify the cortical complexity. Unlike the traditional box-counting method to measure the capacity dimension, our method is a surface-based fractal information dimension method, which incorporates surface area into the probability calculation and thus encapsulates more information of the original cortical surfaces. The accuracy of the algorithm was validated via experiments on phantoms. With the proposed method, we studied the abnormalities of the cortical complexity of the early blind (EB; n=15), compared with matched controls (n=15). We found significantly increased FIDs in the left occipital lobe and decreased FIDs in the right frontal and right parietal lobe in early blind compared with controls. The results demonstrated the potential of the proposed method for identifying cortical abnormalities.", 
        "editor": [
          {
            "familyName": "Dohi", 
            "givenName": "Takeyoshi", 
            "type": "Person"
          }, 
          {
            "familyName": "Sakuma", 
            "givenName": "Ichiro", 
            "type": "Person"
          }, 
          {
            "familyName": "Liao", 
            "givenName": "Hongen", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-540-79982-5_15", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-540-79981-8", 
            "978-3-540-79982-5"
          ], 
          "name": "Medical Imaging and Augmented Reality", 
          "type": "Book"
        }, 
        "name": "A Surface-Based Fractal Information Dimension Method for Cortical Complexity Analysis", 
        "pagination": "133-141", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-540-79982-5_15"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "daf5df96b3539f79c9a0f2c56c47c5e794910bafa3c1c2fe5810ee8561658988"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045966986"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-540-79982-5_15", 
          "https://app.dimensions.ai/details/publication/pub.1045966986"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T15:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000554.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-540-79982-5_15"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-79982-5_15'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-79982-5_15'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-79982-5_15'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-79982-5_15'


     

    This table displays all metadata directly associated to this object as RDF triples.

    210 TRIPLES      23 PREDICATES      53 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-540-79982-5_15 schema:about anzsrc-for:11
    2 anzsrc-for:1109
    3 schema:author N6bfa3fec6634415cbb60f20a0cb023b9
    4 schema:citation sg:pub.10.1007/bf00304699
    5 sg:pub.10.1038/nn1277
    6 https://doi.org/10.1002/(sici)1096-9861(19960325)367:1<70::aid-cne6>3.0.co;2-g
    7 https://doi.org/10.1002/hbm.20238
    8 https://doi.org/10.1006/nimg.1998.0395
    9 https://doi.org/10.1006/nimg.1998.0396
    10 https://doi.org/10.1016/j.biopsych.2003.12.027
    11 https://doi.org/10.1016/j.cub.2005.06.053
    12 https://doi.org/10.1016/j.jneumeth.2005.06.021
    13 https://doi.org/10.1016/j.jns.2004.06.016
    14 https://doi.org/10.1016/j.neulet.2005.04.078
    15 https://doi.org/10.1016/j.neurobiolaging.2006.06.020
    16 https://doi.org/10.1016/j.neuroimage.2005.08.049
    17 https://doi.org/10.1016/j.neuroimage.2007.03.057
    18 https://doi.org/10.1016/j.neuroimage.2007.05.014
    19 https://doi.org/10.1016/s0925-4927(01)00091-9
    20 https://doi.org/10.1016/s1053-8119(03)00380-x
    21 https://doi.org/10.1017/s0033291700027926
    22 https://doi.org/10.1093/brain/awm121
    23 https://doi.org/10.1093/cercor/6.6.830
    24 https://doi.org/10.1109/tbme.2004.831543
    25 https://doi.org/10.1109/tmi.2007.903576
    26 https://doi.org/10.1111/j.1460-9568.2004.03630.x
    27 https://doi.org/10.1159/000117155
    28 https://doi.org/10.1523/jneurosci.0165-05.2005
    29 https://doi.org/10.1523/jneurosci.16-13-04261.1996
    30 schema:datePublished 2008
    31 schema:datePublishedReg 2008-01-01
    32 schema:description In this paper, we proposed a new surface-based fractal information dimension (FID) method to quantify the cortical complexity. Unlike the traditional box-counting method to measure the capacity dimension, our method is a surface-based fractal information dimension method, which incorporates surface area into the probability calculation and thus encapsulates more information of the original cortical surfaces. The accuracy of the algorithm was validated via experiments on phantoms. With the proposed method, we studied the abnormalities of the cortical complexity of the early blind (EB; n=15), compared with matched controls (n=15). We found significantly increased FIDs in the left occipital lobe and decreased FIDs in the right frontal and right parietal lobe in early blind compared with controls. The results demonstrated the potential of the proposed method for identifying cortical abnormalities.
    33 schema:editor Ndae48555801a4434900cb249fe4f2ac3
    34 schema:genre chapter
    35 schema:inLanguage en
    36 schema:isAccessibleForFree false
    37 schema:isPartOf Nf8aedd47087b4be886d5e669823a7fa5
    38 schema:name A Surface-Based Fractal Information Dimension Method for Cortical Complexity Analysis
    39 schema:pagination 133-141
    40 schema:productId N1a6c1a4a013745eb986fb9b24773a706
    41 N4af01caefb924ecc9671fd68ad843d27
    42 Nd46051d9e9ec48d19f85f641688562fb
    43 schema:publisher Ne00154e36a8a4385b2d4e2dda84766af
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045966986
    45 https://doi.org/10.1007/978-3-540-79982-5_15
    46 schema:sdDatePublished 2019-04-15T15:53
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher Nd073f2c4c2ae4757a222791eb49a14c1
    49 schema:url http://link.springer.com/10.1007/978-3-540-79982-5_15
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset chapters
    52 rdf:type schema:Chapter
    53 N073f6d8aac2d42048e543e1b867cbf7a rdf:first sg:person.0606265241.36
    54 rdf:rest N541b13210a1f43d28cbdb7528c6ad2e3
    55 N0b4437ac732b41ed80629f19836833c8 rdf:first sg:person.0606563443.87
    56 rdf:rest rdf:nil
    57 N1a6c1a4a013745eb986fb9b24773a706 schema:name readcube_id
    58 schema:value daf5df96b3539f79c9a0f2c56c47c5e794910bafa3c1c2fe5810ee8561658988
    59 rdf:type schema:PropertyValue
    60 N25d80160cee246d39a86c50e93f400da rdf:first sg:person.01326527402.59
    61 rdf:rest N0b4437ac732b41ed80629f19836833c8
    62 N26ce530f31894e428481001938af4066 schema:familyName Liao
    63 schema:givenName Hongen
    64 rdf:type schema:Person
    65 N36fafddb076d4fa3a0c586ea4fbea3e0 rdf:first sg:person.01075540276.46
    66 rdf:rest N073f6d8aac2d42048e543e1b867cbf7a
    67 N4af01caefb924ecc9671fd68ad843d27 schema:name doi
    68 schema:value 10.1007/978-3-540-79982-5_15
    69 rdf:type schema:PropertyValue
    70 N541b13210a1f43d28cbdb7528c6ad2e3 rdf:first sg:person.0632640575.30
    71 rdf:rest N25d80160cee246d39a86c50e93f400da
    72 N6114cb4051ec44d98e91f5b4ee49e8d9 rdf:first sg:person.01263556141.31
    73 rdf:rest N36fafddb076d4fa3a0c586ea4fbea3e0
    74 N677771c806144e0ea2d5421da3664ff8 schema:familyName Dohi
    75 schema:givenName Takeyoshi
    76 rdf:type schema:Person
    77 N6bfa3fec6634415cbb60f20a0cb023b9 rdf:first sg:person.01321515600.87
    78 rdf:rest N9a3a289aac724743a5ad41be9782beee
    79 N865198bf754c41bc946ad5107fa68582 rdf:first Nd669a983293c4031a2c23f09a927fab4
    80 rdf:rest Nbb2e81d3b7424805bd531ebef6c20dc5
    81 N9a3a289aac724743a5ad41be9782beee rdf:first sg:person.01270160233.51
    82 rdf:rest N6114cb4051ec44d98e91f5b4ee49e8d9
    83 Nbb2e81d3b7424805bd531ebef6c20dc5 rdf:first N26ce530f31894e428481001938af4066
    84 rdf:rest rdf:nil
    85 Nd073f2c4c2ae4757a222791eb49a14c1 schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 Nd46051d9e9ec48d19f85f641688562fb schema:name dimensions_id
    88 schema:value pub.1045966986
    89 rdf:type schema:PropertyValue
    90 Nd669a983293c4031a2c23f09a927fab4 schema:familyName Sakuma
    91 schema:givenName Ichiro
    92 rdf:type schema:Person
    93 Ndae48555801a4434900cb249fe4f2ac3 rdf:first N677771c806144e0ea2d5421da3664ff8
    94 rdf:rest N865198bf754c41bc946ad5107fa68582
    95 Ne00154e36a8a4385b2d4e2dda84766af schema:location Berlin, Heidelberg
    96 schema:name Springer Berlin Heidelberg
    97 rdf:type schema:Organisation
    98 Nf8aedd47087b4be886d5e669823a7fa5 schema:isbn 978-3-540-79981-8
    99 978-3-540-79982-5
    100 schema:name Medical Imaging and Augmented Reality
    101 rdf:type schema:Book
    102 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Medical and Health Sciences
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Neurosciences
    107 rdf:type schema:DefinedTerm
    108 sg:person.01075540276.46 schema:affiliation https://www.grid.ac/institutes/grid.429126.a
    109 schema:familyName Shi
    110 schema:givenName Feng
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075540276.46
    112 rdf:type schema:Person
    113 sg:person.01263556141.31 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
    114 schema:familyName Lin
    115 schema:givenName Lei
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263556141.31
    117 rdf:type schema:Person
    118 sg:person.01270160233.51 schema:affiliation https://www.grid.ac/institutes/grid.429126.a
    119 schema:familyName Jiang
    120 schema:givenName Jiefeng
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270160233.51
    122 rdf:type schema:Person
    123 sg:person.01321515600.87 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
    124 schema:familyName Zhang
    125 schema:givenName Yuanchao
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321515600.87
    127 rdf:type schema:Person
    128 sg:person.01326527402.59 schema:affiliation https://www.grid.ac/institutes/grid.413259.8
    129 schema:familyName Li
    130 schema:givenName Kuncheng
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326527402.59
    132 rdf:type schema:Person
    133 sg:person.0606265241.36 schema:affiliation https://www.grid.ac/institutes/grid.429126.a
    134 schema:familyName Zhou
    135 schema:givenName Yuan
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606265241.36
    137 rdf:type schema:Person
    138 sg:person.0606563443.87 schema:affiliation https://www.grid.ac/institutes/grid.429126.a
    139 schema:familyName Jiang
    140 schema:givenName Tianzi
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606563443.87
    142 rdf:type schema:Person
    143 sg:person.0632640575.30 schema:affiliation https://www.grid.ac/institutes/grid.413259.8
    144 schema:familyName Yu
    145 schema:givenName Chunshui
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632640575.30
    147 rdf:type schema:Person
    148 sg:pub.10.1007/bf00304699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049317811
    149 https://doi.org/10.1007/bf00304699
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1038/nn1277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015266205
    152 https://doi.org/10.1038/nn1277
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1002/(sici)1096-9861(19960325)367:1<70::aid-cne6>3.0.co;2-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1017262510
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1002/hbm.20238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013397768
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1006/nimg.1998.0395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053140737
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1006/nimg.1998.0396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033845535
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.biopsych.2003.12.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040737368
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.cub.2005.06.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046906192
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.jneumeth.2005.06.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003874201
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.jns.2004.06.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007455837
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.neulet.2005.04.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013841286
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.neurobiolaging.2006.06.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040069221
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.neuroimage.2005.08.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045609215
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.neuroimage.2007.03.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031237476
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.neuroimage.2007.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052501323
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/s0925-4927(01)00091-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043070730
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/s1053-8119(03)00380-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052473159
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1017/s0033291700027926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053922257
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1093/brain/awm121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000556495
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1093/cercor/6.6.830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000617776
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1109/tbme.2004.831543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061526216
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1109/tmi.2007.903576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051606538
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1111/j.1460-9568.2004.03630.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010819467
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1159/000117155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041018027
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1523/jneurosci.0165-05.2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048822180
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1523/jneurosci.16-13-04261.1996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082938463
    201 rdf:type schema:CreativeWork
    202 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
    203 schema:name Department of Mathematics, Zhejiang University, Hangzhou, 310027, People’s Republic of China
    204 rdf:type schema:Organization
    205 https://www.grid.ac/institutes/grid.413259.8 schema:alternateName Xuan Wu Hospital of the Capital Medical University
    206 schema:name Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, People’s Republic of China
    207 rdf:type schema:Organization
    208 https://www.grid.ac/institutes/grid.429126.a schema:alternateName Institute of Automation
    209 schema:name National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, People’s Republic of China
    210 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...