Image Acquisition Technique and Sequences Contrast-Enhanced MRA View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

Marco Francone , Michele Anzidei , Ilaria Iacucci , Francesco Vullo , Carlo Catalano

ABSTRACT

Although MR angiography (MRA) can be performed using either black-blood or bright blood, wich have the disvantage of high sensitive to flow related-artifacts, in-plane saturation, and field inhomogeneity, and are also limited by the long acquisition times. Currently, the use of contrast medium for imaging of most vascular districts, agrees to obtain images of high diagnostic accuracy, that can be acquired in seconds rather than minutes with few flow-related artifacts. Such introduction explains the reason, Currently, MR angiography has proven to be the best approach for imaging of most vascular districts is the use of contrast-enhanced (CE-MRA), offering the opportunity to detect vascular disease rapidly and early in the course of the disease. Contrast administration should be optimized in order to concentrate the highest amount of gadolinium in the acquisition temporal window within district of interest, and imaging should be ideally performed at the peak of vascular enhancement, when a maximum difference exists between signal intensity of the target vessel and the surrounding overlapping structures. Three different techniques are currently available for this purpose: the test bolus scan, the automated bolus detection, and the MR fluoroscopic trigger. Obviously, to deliver the best contrast, k-space center-filling must correspond to the moment of peak intravascular contrast; for this purpose, the acquisition of central k-space data is timed to the contrast bolus arrival within the target vessels The sequences best suited to CE-MRA imaging are: More... »

PAGES

17-25

Book

TITLE

MR Angiography of the Body

ISBN

978-3-540-79716-6
978-3-540-79717-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-79717-3_3

DOI

http://dx.doi.org/10.1007/978-3-540-79717-3_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025517822


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Radiology, University of Rome \u201cLa Sapienza,\u201d Policlinico Umberto I, viale Regina Elena 324, Roma, 00161, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Francone", 
        "givenName": "Marco", 
        "id": "sg:person.0673604272.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673604272.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Radiology, University of Rome \u201cLa Sapienza,\u201d Policlinico Umberto I, viale Regina Elena 324, Roma, 00161, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anzidei", 
        "givenName": "Michele", 
        "id": "sg:person.0735362216.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735362216.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Radiology, University of Rome \u201cLa Sapienza,\u201d Policlinico Umberto I, viale Regina Elena 324, Roma, 00161, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iacucci", 
        "givenName": "Ilaria", 
        "id": "sg:person.0613107015.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613107015.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Radiology, University of Rome \u201cLa Sapienza,\u201d Policlinico Umberto I, viale Regina Elena 324, Roma, 00161, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vullo", 
        "givenName": "Francesco", 
        "id": "sg:person.0670303147.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670303147.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Department of Radiology, University of Rome \u201cLa Sapienza,\u201d Policlinico Umberto I, viale Regina Elena 324, Roma, 00161, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Catalano", 
        "givenName": "Carlo", 
        "id": "sg:person.01250755056.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250755056.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jmri.20890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000584641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000584641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.215.2.r00ma21584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002472150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja017168k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002663166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja017168k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002663166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1005416131", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03869-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005416131", 
          "https://doi.org/10.1007/978-3-662-03869-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03869-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005416131", 
          "https://doi.org/10.1007/978-3-662-03869-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.10079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006003251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.21303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009264927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010866281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.217.1.r00se47284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019460690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.211.1.r99ap08265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021451126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.211.1.r99ap1859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024965520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0720-048x(02)00333-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025287295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0720-048x(02)00333-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025287295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.1880030614", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028899459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiographics.20.1.g00ja10135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029147991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0275-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031000274", 
          "https://doi.org/10.1007/s00330-006-0275-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0275-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031000274", 
          "https://doi.org/10.1007/s00330-006-0275-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032543758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034168700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000184756.66360.d3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047558970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000184756.66360.d3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047558970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.rli.0000184756.66360.d3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047558970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004424-199712000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060184109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004424-199712000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060184109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004424-199712000-00004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060184109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004424-199809000-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060184201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004424-199809000-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060184201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004424-199809000-00006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060184201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.170.2.9456943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069321414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2512081197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077892093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.207.2.9577507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083257438"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Although MR angiography (MRA) can be performed using either black-blood or bright blood, wich have the disvantage of high sensitive to flow related-artifacts, in-plane saturation, and field inhomogeneity, and are also limited by the long acquisition times. Currently, the use of contrast medium for imaging of most vascular districts, agrees to obtain images of high diagnostic accuracy, that can be acquired in seconds rather than minutes with few flow-related artifacts. Such introduction explains the reason, Currently, MR angiography has proven to be the best approach for imaging of most vascular districts is the use of contrast-enhanced (CE-MRA), offering the opportunity to detect vascular disease rapidly and early in the course of the disease. Contrast administration should be optimized in order to concentrate the highest amount of gadolinium in the acquisition temporal window within district of interest, and imaging should be ideally performed at the peak of vascular enhancement, when a maximum difference exists between signal intensity of the target vessel and the surrounding overlapping structures. Three different techniques are currently available for this purpose: the test bolus scan, the automated bolus detection, and the MR fluoroscopic trigger. Obviously, to deliver the best contrast, k-space center-filling must correspond to the moment of peak intravascular contrast; for this purpose, the acquisition of central k-space data is timed to the contrast bolus arrival within the target vessels The sequences best suited to CE-MRA imaging are:", 
    "editor": [
      {
        "familyName": "Neri", 
        "givenName": "E.", 
        "type": "Person"
      }, 
      {
        "familyName": "Cosottini", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Caramella", 
        "givenName": "D.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-79717-3_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-79716-6", 
        "978-3-540-79717-3"
      ], 
      "name": "MR Angiography of the Body", 
      "type": "Book"
    }, 
    "name": "Image Acquisition Technique and Sequences Contrast-Enhanced MRA", 
    "pagination": "17-25", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-79717-3_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7991778daa86391384c01d2f2d2e6c377c80cda517cef47e06f26011896f3cf1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025517822"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-79717-3_3", 
      "https://app.dimensions.ai/details/publication/pub.1025517822"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000259.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-540-79717-3_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-79717-3_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-79717-3_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-79717-3_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-79717-3_3'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      23 PREDICATES      50 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-79717-3_3 schema:about anzsrc-for:11
2 anzsrc-for:1102
3 schema:author N68419de1f93d42c8a8625299359fdf23
4 schema:citation sg:pub.10.1007/978-3-662-03869-7
5 sg:pub.10.1007/s00330-006-0275-5
6 https://app.dimensions.ai/details/publication/pub.1005416131
7 https://doi.org/10.1002/jmri.10079
8 https://doi.org/10.1002/jmri.1880030614
9 https://doi.org/10.1002/jmri.20074
10 https://doi.org/10.1002/jmri.20767
11 https://doi.org/10.1002/jmri.20890
12 https://doi.org/10.1002/jmri.21303
13 https://doi.org/10.1002/mrm.21298
14 https://doi.org/10.1016/s0720-048x(02)00333-9
15 https://doi.org/10.1021/ja017168k
16 https://doi.org/10.1097/00004424-199712000-00004
17 https://doi.org/10.1097/00004424-199809000-00006
18 https://doi.org/10.1097/01.rli.0000184756.66360.d3
19 https://doi.org/10.1148/radiographics.20.1.g00ja10135
20 https://doi.org/10.1148/radiol.2512081197
21 https://doi.org/10.1148/radiology.207.2.9577507
22 https://doi.org/10.1148/radiology.211.1.r99ap08265
23 https://doi.org/10.1148/radiology.211.1.r99ap1859
24 https://doi.org/10.1148/radiology.215.2.r00ma21584
25 https://doi.org/10.1148/radiology.217.1.r00se47284
26 https://doi.org/10.2214/ajr.170.2.9456943
27 schema:datePublished 2010
28 schema:datePublishedReg 2010-01-01
29 schema:description Although MR angiography (MRA) can be performed using either black-blood or bright blood, wich have the disvantage of high sensitive to flow related-artifacts, in-plane saturation, and field inhomogeneity, and are also limited by the long acquisition times. Currently, the use of contrast medium for imaging of most vascular districts, agrees to obtain images of high diagnostic accuracy, that can be acquired in seconds rather than minutes with few flow-related artifacts. Such introduction explains the reason, Currently, MR angiography has proven to be the best approach for imaging of most vascular districts is the use of contrast-enhanced (CE-MRA), offering the opportunity to detect vascular disease rapidly and early in the course of the disease. Contrast administration should be optimized in order to concentrate the highest amount of gadolinium in the acquisition temporal window within district of interest, and imaging should be ideally performed at the peak of vascular enhancement, when a maximum difference exists between signal intensity of the target vessel and the surrounding overlapping structures. Three different techniques are currently available for this purpose: the test bolus scan, the automated bolus detection, and the MR fluoroscopic trigger. Obviously, to deliver the best contrast, k-space center-filling must correspond to the moment of peak intravascular contrast; for this purpose, the acquisition of central k-space data is timed to the contrast bolus arrival within the target vessels The sequences best suited to CE-MRA imaging are:
30 schema:editor N1a9d5769c15e4700bf109db4dae8906e
31 schema:genre chapter
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N2da5b524949a4f65a7049f33d76a4f23
35 schema:name Image Acquisition Technique and Sequences Contrast-Enhanced MRA
36 schema:pagination 17-25
37 schema:productId N7463b49f831844e389323a910ab38652
38 Nd4acde2c8d414197a5da54d9e08b1cce
39 Nd820ad89a1a64b2199ac0406ec3dd2be
40 schema:publisher N337c42ef3f0c4af0b0dcf0714ba95ebd
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025517822
42 https://doi.org/10.1007/978-3-540-79717-3_3
43 schema:sdDatePublished 2019-04-15T18:11
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N96b1b203ffc742cf9e78d63e7528a418
46 schema:url http://link.springer.com/10.1007/978-3-540-79717-3_3
47 sgo:license sg:explorer/license/
48 sgo:sdDataset chapters
49 rdf:type schema:Chapter
50 N025f6da285094483947f71978862ecd1 rdf:first sg:person.0735362216.50
51 rdf:rest N9a89c45dfd4d475c832c33094d174622
52 N080615f8df0a4e2cb19b6eda40d1d974 rdf:first sg:person.0670303147.29
53 rdf:rest N2f0543fb8d5b4985a1ddcac1c710eb32
54 N1a9d5769c15e4700bf109db4dae8906e rdf:first N98a0e068afab421f84186b1d1384f706
55 rdf:rest Na6a604e8b3f0433eba91fb2036565045
56 N2da5b524949a4f65a7049f33d76a4f23 schema:isbn 978-3-540-79716-6
57 978-3-540-79717-3
58 schema:name MR Angiography of the Body
59 rdf:type schema:Book
60 N2f0543fb8d5b4985a1ddcac1c710eb32 rdf:first sg:person.01250755056.04
61 rdf:rest rdf:nil
62 N337c42ef3f0c4af0b0dcf0714ba95ebd schema:location Berlin, Heidelberg
63 schema:name Springer Berlin Heidelberg
64 rdf:type schema:Organisation
65 N3947c96f39c347e2a57cec2287b3727a schema:familyName Cosottini
66 schema:givenName M.
67 rdf:type schema:Person
68 N4578a83589524a35807d2d5db23911cd schema:familyName Caramella
69 schema:givenName D.
70 rdf:type schema:Person
71 N68419de1f93d42c8a8625299359fdf23 rdf:first sg:person.0673604272.06
72 rdf:rest N025f6da285094483947f71978862ecd1
73 N7463b49f831844e389323a910ab38652 schema:name doi
74 schema:value 10.1007/978-3-540-79717-3_3
75 rdf:type schema:PropertyValue
76 N96b1b203ffc742cf9e78d63e7528a418 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N98a0e068afab421f84186b1d1384f706 schema:familyName Neri
79 schema:givenName E.
80 rdf:type schema:Person
81 N9a89c45dfd4d475c832c33094d174622 rdf:first sg:person.0613107015.60
82 rdf:rest N080615f8df0a4e2cb19b6eda40d1d974
83 Na6a604e8b3f0433eba91fb2036565045 rdf:first N3947c96f39c347e2a57cec2287b3727a
84 rdf:rest Nae03554066414e638ff000768a4af595
85 Nae03554066414e638ff000768a4af595 rdf:first N4578a83589524a35807d2d5db23911cd
86 rdf:rest rdf:nil
87 Nd4acde2c8d414197a5da54d9e08b1cce schema:name dimensions_id
88 schema:value pub.1025517822
89 rdf:type schema:PropertyValue
90 Nd820ad89a1a64b2199ac0406ec3dd2be schema:name readcube_id
91 schema:value 7991778daa86391384c01d2f2d2e6c377c80cda517cef47e06f26011896f3cf1
92 rdf:type schema:PropertyValue
93 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
94 schema:name Medical and Health Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
97 schema:name Cardiorespiratory Medicine and Haematology
98 rdf:type schema:DefinedTerm
99 sg:person.01250755056.04 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
100 schema:familyName Catalano
101 schema:givenName Carlo
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250755056.04
103 rdf:type schema:Person
104 sg:person.0613107015.60 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
105 schema:familyName Iacucci
106 schema:givenName Ilaria
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0613107015.60
108 rdf:type schema:Person
109 sg:person.0670303147.29 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
110 schema:familyName Vullo
111 schema:givenName Francesco
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670303147.29
113 rdf:type schema:Person
114 sg:person.0673604272.06 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
115 schema:familyName Francone
116 schema:givenName Marco
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673604272.06
118 rdf:type schema:Person
119 sg:person.0735362216.50 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
120 schema:familyName Anzidei
121 schema:givenName Michele
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735362216.50
123 rdf:type schema:Person
124 sg:pub.10.1007/978-3-662-03869-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005416131
125 https://doi.org/10.1007/978-3-662-03869-7
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s00330-006-0275-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031000274
128 https://doi.org/10.1007/s00330-006-0275-5
129 rdf:type schema:CreativeWork
130 https://app.dimensions.ai/details/publication/pub.1005416131 schema:CreativeWork
131 https://doi.org/10.1002/jmri.10079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006003251
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/jmri.1880030614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028899459
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/jmri.20074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034168700
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/jmri.20767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032543758
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1002/jmri.20890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000584641
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/jmri.21303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009264927
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/mrm.21298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010866281
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0720-048x(02)00333-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025287295
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1021/ja017168k schema:sameAs https://app.dimensions.ai/details/publication/pub.1002663166
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1097/00004424-199712000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060184109
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1097/00004424-199809000-00006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060184201
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1097/01.rli.0000184756.66360.d3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047558970
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1148/radiographics.20.1.g00ja10135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029147991
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1148/radiol.2512081197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077892093
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1148/radiology.207.2.9577507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083257438
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1148/radiology.211.1.r99ap08265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021451126
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1148/radiology.211.1.r99ap1859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024965520
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1148/radiology.215.2.r00ma21584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002472150
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1148/radiology.217.1.r00se47284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019460690
168 rdf:type schema:CreativeWork
169 https://doi.org/10.2214/ajr.170.2.9456943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069321414
170 rdf:type schema:CreativeWork
171 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
172 schema:name Department of Radiology, University of Rome “La Sapienza,” Policlinico Umberto I, viale Regina Elena 324, Roma, 00161, Italy
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...