Communication-Aware Face Detection Using Noc Architecture View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2008

AUTHORS

Hung-Chih Lai , Radu Marculescu , Marios Savvides , Tsuhan Chen

ABSTRACT

Face detection is an essential first step towards many advanced computer vision, biometrics recognition and multimedia applications, such as face tracking, face recognition, and video surveillance. In this paper, we proposed an FPGA hardware design with NoC (Network-on-Chip) architecture based on an AdaBoost face detection algorithm. The AdaBoost-based method is the state-of-the-art face detection algorithm in terms of speed and detection rates and the NoC provides high communication capability architecture. This design is verified on a Xilinx Virtex-II Pro FPGA platform. Simulation results show the improvement in speed 40 frames per second compared to software implementation. The NoC architecture provides scalability so that our proposed face detection method can be sped up by adding multiple classifier modules. More... »

PAGES

181-189

Book

TITLE

Computer Vision Systems

ISBN

978-3-540-79546-9
978-3-540-79547-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-79547-6_18

DOI

http://dx.doi.org/10.1007/978-3-540-79547-6_18

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016334108


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Carnegie Mellon University", 
          "id": "https://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Department of Electrical and Computer Engineering, Carnegie Mellon University, PA 15213, Pittsburgh, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lai", 
        "givenName": "Hung-Chih", 
        "id": "sg:person.016710126244.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710126244.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carnegie Mellon University", 
          "id": "https://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Department of Electrical and Computer Engineering, Carnegie Mellon University, PA 15213, Pittsburgh, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marculescu", 
        "givenName": "Radu", 
        "id": "sg:person.0754161054.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754161054.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carnegie Mellon University", 
          "id": "https://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Department of Electrical and Computer Engineering, Carnegie Mellon University, PA 15213, Pittsburgh, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Savvides", 
        "givenName": "Marios", 
        "id": "sg:person.0635074310.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635074310.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carnegie Mellon University", 
          "id": "https://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Department of Electrical and Computer Engineering, Carnegie Mellon University, PA 15213, Pittsburgh, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Tsuhan", 
        "id": "sg:person.012245072625.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012245072625.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0031-3203(94)90017-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008607450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(94)90017-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008607450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:visi.0000011202.85607.00", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029490995", 
          "https://doi.org/10.1023/b:visi.0000011202.85607.00"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0262-8856(95)99726-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045497885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.655647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.655648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.982883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.1991.139758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086328381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2001.990517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093187020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icvs.2006.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093242579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icvd.2004.1260915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093638913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/biocas.2004.1454161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093655134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2000.855895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094232942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/siu.2004.1338596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095193349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isvlsi.2006.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095201426"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "Face detection is an essential first step towards many advanced computer vision, biometrics recognition and multimedia applications, such as face tracking, face recognition, and video surveillance. In this paper, we proposed an FPGA hardware design with NoC (Network-on-Chip) architecture based on an AdaBoost face detection algorithm. The AdaBoost-based method is the state-of-the-art face detection algorithm in terms of speed and detection rates and the NoC provides high communication capability architecture. This design is verified on a Xilinx Virtex-II Pro FPGA platform. Simulation results show the improvement in speed 40 frames per second compared to software implementation. The NoC architecture provides scalability so that our proposed face detection method can be sped up by adding multiple classifier modules.", 
    "editor": [
      {
        "familyName": "Gasteratos", 
        "givenName": "Antonios", 
        "type": "Person"
      }, 
      {
        "familyName": "Vincze", 
        "givenName": "Markus", 
        "type": "Person"
      }, 
      {
        "familyName": "Tsotsos", 
        "givenName": "John K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-79547-6_18", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-79546-9", 
        "978-3-540-79547-6"
      ], 
      "name": "Computer Vision Systems", 
      "type": "Book"
    }, 
    "name": "Communication-Aware Face Detection Using Noc Architecture", 
    "pagination": "181-189", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-79547-6_18"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4dd3d2a02116611ffd066b6db713b18bb06cb4a89d34729816f5cb13d291fa29"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016334108"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-79547-6_18", 
      "https://app.dimensions.ai/details/publication/pub.1016334108"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T06:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113655_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-79547-6_18"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-79547-6_18'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-79547-6_18'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-79547-6_18'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-79547-6_18'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-79547-6_18 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N1b9f5d943aca4cca80164c2dc4347b89
4 schema:citation sg:pub.10.1023/b:visi.0000011202.85607.00
5 https://doi.org/10.1016/0031-3203(94)90017-5
6 https://doi.org/10.1016/0262-8856(95)99726-h
7 https://doi.org/10.1109/34.655647
8 https://doi.org/10.1109/34.655648
9 https://doi.org/10.1109/34.982883
10 https://doi.org/10.1109/biocas.2004.1454161
11 https://doi.org/10.1109/cvpr.1991.139758
12 https://doi.org/10.1109/cvpr.2000.855895
13 https://doi.org/10.1109/cvpr.2001.990517
14 https://doi.org/10.1109/icvd.2004.1260915
15 https://doi.org/10.1109/icvs.2006.26
16 https://doi.org/10.1109/isvlsi.2006.10
17 https://doi.org/10.1109/siu.2004.1338596
18 schema:datePublished 2008
19 schema:datePublishedReg 2008-01-01
20 schema:description Face detection is an essential first step towards many advanced computer vision, biometrics recognition and multimedia applications, such as face tracking, face recognition, and video surveillance. In this paper, we proposed an FPGA hardware design with NoC (Network-on-Chip) architecture based on an AdaBoost face detection algorithm. The AdaBoost-based method is the state-of-the-art face detection algorithm in terms of speed and detection rates and the NoC provides high communication capability architecture. This design is verified on a Xilinx Virtex-II Pro FPGA platform. Simulation results show the improvement in speed 40 frames per second compared to software implementation. The NoC architecture provides scalability so that our proposed face detection method can be sped up by adding multiple classifier modules.
21 schema:editor N7977c862ef164b1eaa35bb5b2484385e
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N12e05f489e79414eb69c99faafca06a1
26 schema:name Communication-Aware Face Detection Using Noc Architecture
27 schema:pagination 181-189
28 schema:productId N126d5be31b2b43f5885afa5572fc9975
29 N7c6f7ea38711440bb1de82d1fada5c5f
30 N8a6c919ef0934bf8b4f650a814d974f2
31 schema:publisher N4586baade0e04692a8e6375b6cc0267e
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016334108
33 https://doi.org/10.1007/978-3-540-79547-6_18
34 schema:sdDatePublished 2019-04-16T06:00
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N17f46468aa0f4356be381d5c01bf2d72
37 schema:url https://link.springer.com/10.1007%2F978-3-540-79547-6_18
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N126d5be31b2b43f5885afa5572fc9975 schema:name dimensions_id
42 schema:value pub.1016334108
43 rdf:type schema:PropertyValue
44 N12e05f489e79414eb69c99faafca06a1 schema:isbn 978-3-540-79546-9
45 978-3-540-79547-6
46 schema:name Computer Vision Systems
47 rdf:type schema:Book
48 N17f46468aa0f4356be381d5c01bf2d72 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N1b9f5d943aca4cca80164c2dc4347b89 rdf:first sg:person.016710126244.17
51 rdf:rest Nf39b6f6ec7044e08b3832d2305634fe0
52 N23bcb4f13a034832ad0eca92313d8b8a schema:familyName Vincze
53 schema:givenName Markus
54 rdf:type schema:Person
55 N318757fb916e454f852f6b1ef22129af rdf:first N23bcb4f13a034832ad0eca92313d8b8a
56 rdf:rest Nd019a5c5e2ea4d54a108099a6b4e1146
57 N4586baade0e04692a8e6375b6cc0267e schema:location Berlin, Heidelberg
58 schema:name Springer Berlin Heidelberg
59 rdf:type schema:Organisation
60 N582f48c8eaa342c68e2b017517c6791c rdf:first sg:person.0635074310.49
61 rdf:rest Nda30351427454a6fb4bab79e66283960
62 N7977c862ef164b1eaa35bb5b2484385e rdf:first Nd87ff1cabc414a7aa0bc45ab66f0d820
63 rdf:rest N318757fb916e454f852f6b1ef22129af
64 N7c6f7ea38711440bb1de82d1fada5c5f schema:name doi
65 schema:value 10.1007/978-3-540-79547-6_18
66 rdf:type schema:PropertyValue
67 N8a6c919ef0934bf8b4f650a814d974f2 schema:name readcube_id
68 schema:value 4dd3d2a02116611ffd066b6db713b18bb06cb4a89d34729816f5cb13d291fa29
69 rdf:type schema:PropertyValue
70 Nb184106b9d5f4521a1b98db2043edf47 schema:familyName Tsotsos
71 schema:givenName John K.
72 rdf:type schema:Person
73 Nd019a5c5e2ea4d54a108099a6b4e1146 rdf:first Nb184106b9d5f4521a1b98db2043edf47
74 rdf:rest rdf:nil
75 Nd87ff1cabc414a7aa0bc45ab66f0d820 schema:familyName Gasteratos
76 schema:givenName Antonios
77 rdf:type schema:Person
78 Nda30351427454a6fb4bab79e66283960 rdf:first sg:person.012245072625.31
79 rdf:rest rdf:nil
80 Nf39b6f6ec7044e08b3832d2305634fe0 rdf:first sg:person.0754161054.46
81 rdf:rest N582f48c8eaa342c68e2b017517c6791c
82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information and Computing Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
86 schema:name Artificial Intelligence and Image Processing
87 rdf:type schema:DefinedTerm
88 sg:person.012245072625.31 schema:affiliation https://www.grid.ac/institutes/grid.147455.6
89 schema:familyName Chen
90 schema:givenName Tsuhan
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012245072625.31
92 rdf:type schema:Person
93 sg:person.016710126244.17 schema:affiliation https://www.grid.ac/institutes/grid.147455.6
94 schema:familyName Lai
95 schema:givenName Hung-Chih
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710126244.17
97 rdf:type schema:Person
98 sg:person.0635074310.49 schema:affiliation https://www.grid.ac/institutes/grid.147455.6
99 schema:familyName Savvides
100 schema:givenName Marios
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635074310.49
102 rdf:type schema:Person
103 sg:person.0754161054.46 schema:affiliation https://www.grid.ac/institutes/grid.147455.6
104 schema:familyName Marculescu
105 schema:givenName Radu
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754161054.46
107 rdf:type schema:Person
108 sg:pub.10.1023/b:visi.0000011202.85607.00 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029490995
109 https://doi.org/10.1023/b:visi.0000011202.85607.00
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0031-3203(94)90017-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008607450
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0262-8856(95)99726-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1045497885
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/34.655647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156724
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/34.655648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156725
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/34.982883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157357
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/biocas.2004.1454161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093655134
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/cvpr.1991.139758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086328381
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/cvpr.2000.855895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094232942
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/cvpr.2001.990517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093187020
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/icvd.2004.1260915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093638913
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/icvs.2006.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093242579
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/isvlsi.2006.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095201426
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/siu.2004.1338596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095193349
136 rdf:type schema:CreativeWork
137 https://www.grid.ac/institutes/grid.147455.6 schema:alternateName Carnegie Mellon University
138 schema:name Department of Electrical and Computer Engineering, Carnegie Mellon University, PA 15213, Pittsburgh, USA
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...