Simulated Annealing Optimization of Multi-element Synthetic Aperture Imaging Systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Milen Nikolov , Vera Behar

ABSTRACT

In conventional ultrasound imaging systems with phased arrays, the improvement of lateral resolution of images requires enlarging of the number of array elements that in turn increases both, the complexity and the cost, of imaging systems. Multi-element synthetic aperture focusing (MSAF) systems are a very good alternative to conventional systems with phased arrays. The benefit of the synthetic aperture is in reduction of the system complexity, cost, and acquisition time.A general technique for parameter optimization of an MSAF system is described and evaluated in this paper. The locations of all “transmit-receive” subaperture centers over a virtual linear array are optimized using the simulated annealing algorithm. The optimization criterion is expressed in terms of the beam characteristics — beam width and side lobe level.The comparison analysis between an optimized MSAF system and an equivalent conventional MSAF system shows that the optimized system acquires images of equivalent quality much faster. More... »

PAGES

585-592

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-78827-0_67

DOI

http://dx.doi.org/10.1007/978-3-540-78827-0_67

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039931800


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Parallel Processing, Bulgarian Academy of Sciences, Acad. G. Bonchev, bl. 25A, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424859.6", 
          "name": [
            "Institute for Parallel Processing, Bulgarian Academy of Sciences, Acad. G. Bonchev, bl. 25A, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolov", 
        "givenName": "Milen", 
        "id": "sg:person.012125134057.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012125134057.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Parallel Processing, Bulgarian Academy of Sciences, Acad. G. Bonchev, bl. 25A, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.424859.6", 
          "name": [
            "Institute for Parallel Processing, Bulgarian Academy of Sciences, Acad. G. Bonchev, bl. 25A, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Behar", 
        "givenName": "Vera", 
        "id": "sg:person.014512504451.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014512504451.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "In conventional ultrasound imaging systems with phased arrays, the improvement of lateral resolution of images requires enlarging of the number of array elements that in turn increases both, the complexity and the cost, of imaging systems. Multi-element synthetic aperture focusing (MSAF) systems are a very good alternative to conventional systems with phased arrays. The benefit of the synthetic aperture is in reduction of the system complexity, cost, and acquisition time.A general technique for parameter optimization of an MSAF system is described and evaluated in this paper. The locations of all \u201ctransmit-receive\u201d subaperture centers over a virtual linear array are optimized using the simulated annealing algorithm. The optimization criterion is expressed in terms of the beam characteristics \u2014 beam width and side lobe level.The comparison analysis between an optimized MSAF system and an equivalent conventional MSAF system shows that the optimized system acquires images of equivalent quality much faster.", 
    "editor": [
      {
        "familyName": "Lirkov", 
        "givenName": "Ivan", 
        "type": "Person"
      }, 
      {
        "familyName": "Margenov", 
        "givenName": "Svetozar", 
        "type": "Person"
      }, 
      {
        "familyName": "Wa\u015bniewski", 
        "givenName": "Jerzy", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-78827-0_67", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-78825-6", 
        "978-3-540-78827-0"
      ], 
      "name": "Large-Scale Scientific Computing", 
      "type": "Book"
    }, 
    "keywords": [
      "synthetic aperture", 
      "conventional ultrasound imaging systems", 
      "ultrasound imaging system", 
      "virtual linear array", 
      "synthetic aperture imaging system", 
      "imaging system", 
      "system complexity", 
      "conventional system", 
      "optimized system", 
      "parameter optimization", 
      "annealing algorithm", 
      "lateral resolution", 
      "aperture imaging system", 
      "array elements", 
      "general technique", 
      "optimization criteria", 
      "annealing optimization", 
      "side lobe level", 
      "equivalent quality", 
      "complexity", 
      "images", 
      "linear array", 
      "optimization", 
      "array", 
      "lobe level", 
      "acquisition time", 
      "system", 
      "algorithm", 
      "aperture", 
      "good alternative", 
      "cost", 
      "comparison analysis", 
      "width", 
      "technique", 
      "resolution", 
      "quality", 
      "elements", 
      "improvement", 
      "reduction", 
      "alternative", 
      "location", 
      "enlarging", 
      "benefits", 
      "terms", 
      "number", 
      "time", 
      "analysis", 
      "turn", 
      "criteria", 
      "center", 
      "levels", 
      "paper", 
      "Multi-element synthetic aperture", 
      "MSAF system", 
      "subaperture centers", 
      "beam characteristics \u2014 beam width", 
      "characteristics \u2014 beam width", 
      "equivalent conventional MSAF system", 
      "conventional MSAF system", 
      "Multi-element Synthetic Aperture Imaging Systems"
    ], 
    "name": "Simulated Annealing Optimization of Multi-element Synthetic Aperture Imaging Systems", 
    "pagination": "585-592", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039931800"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-78827-0_67"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-78827-0_67", 
      "https://app.dimensions.ai/details/publication/pub.1039931800"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_117.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-78827-0_67"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-78827-0_67'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-78827-0_67'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-78827-0_67'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-78827-0_67'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      23 PREDICATES      86 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-78827-0_67 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N27fbfc8d645f4077ac13111bc6dc45cb
4 schema:datePublished 2008
5 schema:datePublishedReg 2008-01-01
6 schema:description In conventional ultrasound imaging systems with phased arrays, the improvement of lateral resolution of images requires enlarging of the number of array elements that in turn increases both, the complexity and the cost, of imaging systems. Multi-element synthetic aperture focusing (MSAF) systems are a very good alternative to conventional systems with phased arrays. The benefit of the synthetic aperture is in reduction of the system complexity, cost, and acquisition time.A general technique for parameter optimization of an MSAF system is described and evaluated in this paper. The locations of all “transmit-receive” subaperture centers over a virtual linear array are optimized using the simulated annealing algorithm. The optimization criterion is expressed in terms of the beam characteristics — beam width and side lobe level.The comparison analysis between an optimized MSAF system and an equivalent conventional MSAF system shows that the optimized system acquires images of equivalent quality much faster.
7 schema:editor N087e087108354846ac10589bfd3e77a7
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ndc0c9ac0044c49f9abbfba9e3ccb8b30
12 schema:keywords MSAF system
13 Multi-element Synthetic Aperture Imaging Systems
14 Multi-element synthetic aperture
15 acquisition time
16 algorithm
17 alternative
18 analysis
19 annealing algorithm
20 annealing optimization
21 aperture
22 aperture imaging system
23 array
24 array elements
25 beam characteristics — beam width
26 benefits
27 center
28 characteristics — beam width
29 comparison analysis
30 complexity
31 conventional MSAF system
32 conventional system
33 conventional ultrasound imaging systems
34 cost
35 criteria
36 elements
37 enlarging
38 equivalent conventional MSAF system
39 equivalent quality
40 general technique
41 good alternative
42 images
43 imaging system
44 improvement
45 lateral resolution
46 levels
47 linear array
48 lobe level
49 location
50 number
51 optimization
52 optimization criteria
53 optimized system
54 paper
55 parameter optimization
56 quality
57 reduction
58 resolution
59 side lobe level
60 subaperture centers
61 synthetic aperture
62 synthetic aperture imaging system
63 system
64 system complexity
65 technique
66 terms
67 time
68 turn
69 ultrasound imaging system
70 virtual linear array
71 width
72 schema:name Simulated Annealing Optimization of Multi-element Synthetic Aperture Imaging Systems
73 schema:pagination 585-592
74 schema:productId N6911416b122244dabeb7c577149c5611
75 Nda62e8901ad64504a6ea387061586a50
76 schema:publisher Ndae6a5208f8f416c9642eb624a06abf8
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039931800
78 https://doi.org/10.1007/978-3-540-78827-0_67
79 schema:sdDatePublished 2022-01-01T19:06
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N5f9320edaa424d6f874325f25507f2d7
82 schema:url https://doi.org/10.1007/978-3-540-78827-0_67
83 sgo:license sg:explorer/license/
84 sgo:sdDataset chapters
85 rdf:type schema:Chapter
86 N087e087108354846ac10589bfd3e77a7 rdf:first N558d626cf35942fca80bc96ba8738a09
87 rdf:rest N97d35cfbd67746ffafcc84b8d3c60651
88 N27fbfc8d645f4077ac13111bc6dc45cb rdf:first sg:person.012125134057.05
89 rdf:rest Ncd6089a36cc149cd854cddc76015a905
90 N558d626cf35942fca80bc96ba8738a09 schema:familyName Lirkov
91 schema:givenName Ivan
92 rdf:type schema:Person
93 N5f9320edaa424d6f874325f25507f2d7 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N6911416b122244dabeb7c577149c5611 schema:name doi
96 schema:value 10.1007/978-3-540-78827-0_67
97 rdf:type schema:PropertyValue
98 N76c940db945440a3bd151e426baa1afe schema:familyName Waśniewski
99 schema:givenName Jerzy
100 rdf:type schema:Person
101 N97d35cfbd67746ffafcc84b8d3c60651 rdf:first Nc7a30ae8e776425abf5f556ca17bebb9
102 rdf:rest Nce0825fed4e145708925d4099b91392b
103 Nc7a30ae8e776425abf5f556ca17bebb9 schema:familyName Margenov
104 schema:givenName Svetozar
105 rdf:type schema:Person
106 Ncd6089a36cc149cd854cddc76015a905 rdf:first sg:person.014512504451.48
107 rdf:rest rdf:nil
108 Nce0825fed4e145708925d4099b91392b rdf:first N76c940db945440a3bd151e426baa1afe
109 rdf:rest rdf:nil
110 Nda62e8901ad64504a6ea387061586a50 schema:name dimensions_id
111 schema:value pub.1039931800
112 rdf:type schema:PropertyValue
113 Ndae6a5208f8f416c9642eb624a06abf8 schema:name Springer Nature
114 rdf:type schema:Organisation
115 Ndc0c9ac0044c49f9abbfba9e3ccb8b30 schema:isbn 978-3-540-78825-6
116 978-3-540-78827-0
117 schema:name Large-Scale Scientific Computing
118 rdf:type schema:Book
119 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
120 schema:name Information and Computing Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
123 schema:name Artificial Intelligence and Image Processing
124 rdf:type schema:DefinedTerm
125 sg:person.012125134057.05 schema:affiliation grid-institutes:grid.424859.6
126 schema:familyName Nikolov
127 schema:givenName Milen
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012125134057.05
129 rdf:type schema:Person
130 sg:person.014512504451.48 schema:affiliation grid-institutes:grid.424859.6
131 schema:familyName Behar
132 schema:givenName Vera
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014512504451.48
134 rdf:type schema:Person
135 grid-institutes:grid.424859.6 schema:alternateName Institute for Parallel Processing, Bulgarian Academy of Sciences, Acad. G. Bonchev, bl. 25A, 1113, Sofia, Bulgaria
136 schema:name Institute for Parallel Processing, Bulgarian Academy of Sciences, Acad. G. Bonchev, bl. 25A, 1113, Sofia, Bulgaria
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...