The Fifth Workshop on Learning with Logics and Logics for Learning (LLLL2007) View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

Akihiro Yamamoto , Kouichi Hirata

ABSTRACT

The workshop on Learning with Logics and Logics for Learning (LLLL) was started in January 2002 in Sapporo, Japan, in order to encourage the interchange of computational logic and machine learning. After held twice as a domestic workshop, it was re-started in 2005 as an collocated international workshop with the Annual Conference of Japanese Society for Artificial Intelligence (JSAI). In the past four workshops, we accepted 55 papers in total. We could classify them into two types. The first type is to introduce computational logic into machine learning, of which elements are Boolean algebra, clausal theories and structured data such as first-order terms. The second type is to provide and analyze semantics of logic and mathematics with machine learning, for example, clarifying the relation between computational algebra and machine learning. More... »

PAGES

305-306

Book

TITLE

New Frontiers in Artificial Intelligence

ISBN

978-3-540-78196-7
978-3-540-78197-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-78197-4_28

DOI

http://dx.doi.org/10.1007/978-3-540-78197-4_28

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015059147


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Graduate School of Informatics, Kyoto University, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamamoto", 
        "givenName": "Akihiro", 
        "id": "sg:person.013353173571.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013353173571.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyushu Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.258806.1", 
          "name": [
            "Department of Artificial Intelligence, Kyushu Institute of Technology, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirata", 
        "givenName": "Kouichi", 
        "id": "sg:person.013435033263.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013435033263.67"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "The workshop on Learning with Logics and Logics for Learning (LLLL) was started in January 2002 in Sapporo, Japan, in order to encourage the interchange of computational logic and machine learning. After held twice as a domestic workshop, it was re-started in 2005 as an collocated international workshop with the Annual Conference of Japanese Society for Artificial Intelligence (JSAI). In the past four workshops, we accepted 55 papers in total. We could classify them into two types. The first type is to introduce computational logic into machine learning, of which elements are Boolean algebra, clausal theories and structured data such as first-order terms. The second type is to provide and analyze semantics of logic and mathematics with machine learning, for example, clarifying the relation between computational algebra and machine learning.", 
    "editor": [
      {
        "familyName": "Satoh", 
        "givenName": "Ken", 
        "type": "Person"
      }, 
      {
        "familyName": "Inokuchi", 
        "givenName": "Akihiro", 
        "type": "Person"
      }, 
      {
        "familyName": "Nagao", 
        "givenName": "Katashi", 
        "type": "Person"
      }, 
      {
        "familyName": "Kawamura", 
        "givenName": "Takahiro", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-78197-4_28", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-78196-7", 
        "978-3-540-78197-4"
      ], 
      "name": "New Frontiers in Artificial Intelligence", 
      "type": "Book"
    }, 
    "name": "The Fifth Workshop on Learning with Logics and Logics for Learning (LLLL2007)", 
    "pagination": "305-306", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-78197-4_28"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "47bf1bbd4b85741b83155e05530f8cf31e501fa094476e4a078ae5640bf9fed1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015059147"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-78197-4_28", 
      "https://app.dimensions.ai/details/publication/pub.1015059147"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000025.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-540-78197-4_28"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-78197-4_28'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-78197-4_28'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-78197-4_28'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-78197-4_28'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-78197-4_28 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N39c3db0be17e4cd18a6041a76cda78a3
4 schema:datePublished 2008
5 schema:datePublishedReg 2008-01-01
6 schema:description The workshop on Learning with Logics and Logics for Learning (LLLL) was started in January 2002 in Sapporo, Japan, in order to encourage the interchange of computational logic and machine learning. After held twice as a domestic workshop, it was re-started in 2005 as an collocated international workshop with the Annual Conference of Japanese Society for Artificial Intelligence (JSAI). In the past four workshops, we accepted 55 papers in total. We could classify them into two types. The first type is to introduce computational logic into machine learning, of which elements are Boolean algebra, clausal theories and structured data such as first-order terms. The second type is to provide and analyze semantics of logic and mathematics with machine learning, for example, clarifying the relation between computational algebra and machine learning.
7 schema:editor Na3032f1f2ddd4d1493d00dcf408d2abd
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N8e1127d89ca442478c97c0b7cc94dae4
12 schema:name The Fifth Workshop on Learning with Logics and Logics for Learning (LLLL2007)
13 schema:pagination 305-306
14 schema:productId N0365c76fde084cd0b5b8566cb99470e4
15 N100818cf4e044b3aa08ca0b0c874136c
16 N6f5562d13e8a4777918599d8d268f93d
17 schema:publisher N644eac0d061d483cbe488c5126957d42
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015059147
19 https://doi.org/10.1007/978-3-540-78197-4_28
20 schema:sdDatePublished 2019-04-15T23:38
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nd8917fd5420749c7b26e8f58bcb7744f
23 schema:url http://link.springer.com/10.1007/978-3-540-78197-4_28
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N0365c76fde084cd0b5b8566cb99470e4 schema:name dimensions_id
28 schema:value pub.1015059147
29 rdf:type schema:PropertyValue
30 N100818cf4e044b3aa08ca0b0c874136c schema:name doi
31 schema:value 10.1007/978-3-540-78197-4_28
32 rdf:type schema:PropertyValue
33 N12684c2aa24941ea89fd4ea928ca957f schema:familyName Inokuchi
34 schema:givenName Akihiro
35 rdf:type schema:Person
36 N39c3db0be17e4cd18a6041a76cda78a3 rdf:first sg:person.013353173571.79
37 rdf:rest Nc2c7fb914a8444aab46a4f05518800f4
38 N62b1151494e34a8baf93a4ee26f495da schema:familyName Satoh
39 schema:givenName Ken
40 rdf:type schema:Person
41 N644eac0d061d483cbe488c5126957d42 schema:location Berlin, Heidelberg
42 schema:name Springer Berlin Heidelberg
43 rdf:type schema:Organisation
44 N675de7536c654876963f6c5a8447cae0 rdf:first N747a1643b68845899f9f32f34f6450a1
45 rdf:rest Nef12b441ac944c1284906d3799894a85
46 N6f5562d13e8a4777918599d8d268f93d schema:name readcube_id
47 schema:value 47bf1bbd4b85741b83155e05530f8cf31e501fa094476e4a078ae5640bf9fed1
48 rdf:type schema:PropertyValue
49 N729ca7782c4948128cb850c4a3a0e811 rdf:first N12684c2aa24941ea89fd4ea928ca957f
50 rdf:rest N675de7536c654876963f6c5a8447cae0
51 N747a1643b68845899f9f32f34f6450a1 schema:familyName Nagao
52 schema:givenName Katashi
53 rdf:type schema:Person
54 N8e1127d89ca442478c97c0b7cc94dae4 schema:isbn 978-3-540-78196-7
55 978-3-540-78197-4
56 schema:name New Frontiers in Artificial Intelligence
57 rdf:type schema:Book
58 Na3032f1f2ddd4d1493d00dcf408d2abd rdf:first N62b1151494e34a8baf93a4ee26f495da
59 rdf:rest N729ca7782c4948128cb850c4a3a0e811
60 Nc2c7fb914a8444aab46a4f05518800f4 rdf:first sg:person.013435033263.67
61 rdf:rest rdf:nil
62 Nd8917fd5420749c7b26e8f58bcb7744f schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Ne24a7cbe67994418aff30c9618aa9c88 schema:familyName Kawamura
65 schema:givenName Takahiro
66 rdf:type schema:Person
67 Nef12b441ac944c1284906d3799894a85 rdf:first Ne24a7cbe67994418aff30c9618aa9c88
68 rdf:rest rdf:nil
69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
70 schema:name Information and Computing Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
73 schema:name Artificial Intelligence and Image Processing
74 rdf:type schema:DefinedTerm
75 sg:person.013353173571.79 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
76 schema:familyName Yamamoto
77 schema:givenName Akihiro
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013353173571.79
79 rdf:type schema:Person
80 sg:person.013435033263.67 schema:affiliation https://www.grid.ac/institutes/grid.258806.1
81 schema:familyName Hirata
82 schema:givenName Kouichi
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013435033263.67
84 rdf:type schema:Person
85 https://www.grid.ac/institutes/grid.258799.8 schema:alternateName Kyoto University
86 schema:name Graduate School of Informatics, Kyoto University, Japan
87 rdf:type schema:Organization
88 https://www.grid.ac/institutes/grid.258806.1 schema:alternateName Kyushu Institute of Technology
89 schema:name Department of Artificial Intelligence, Kyushu Institute of Technology, Japan
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...