Trade-Off between Sample Size and Accuracy: Case of Dynamic Measurements under Interval Uncertainty View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2008-01-01

AUTHORS

Hung T. Nguyen , Olga Kosheleva , Vladik Kreinovich , Scott Ferson

ABSTRACT

In many practical situations, we are not satisfied with the accuracy of the existing measurements. There are two possible ways to improve the measurement accuracy: first, instead of a single measurement, we can make repeated measurements; the additional information coming from these additional measurements can improve the accuracy of the result of this series of measurements;second, we can replace the current measuring instrument with a more accurate one; correspondingly, we can use a more accurate (and more expensive) measurement procedure provided by a measuring lab – e.g., a procedure that includes the use of a higher quality reagent. In general, we can combine these two ways, and make repeated measurements with a more accurate measuring instrument. What is the appropriate trade-off between sample size and accuracy? In our previous paper, we solved this problem for the case of static measurements. In this paper, we extend the results to the case of dynamic measurements. More... »

PAGES

45-56

Book

TITLE

Interval / Probabilistic Uncertainty and Non-Classical Logics

ISBN

978-3-540-77663-5
978-3-540-77664-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-77664-2_5

DOI

http://dx.doi.org/10.1007/978-3-540-77664-2_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011412564


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "New Mexico State University, 88003, Las Cruces, NM, USA", 
          "id": "http://www.grid.ac/institutes/grid.24805.3b", 
          "name": [
            "New Mexico State University, 88003, Las Cruces, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nguyen", 
        "givenName": "Hung T.", 
        "id": "sg:person.015415732053.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015415732053.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Texas at El Paso, TX 79968, El Paso, USA", 
          "id": "http://www.grid.ac/institutes/grid.267324.6", 
          "name": [
            "University of Texas at El Paso, TX 79968, El Paso, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kosheleva", 
        "givenName": "Olga", 
        "id": "sg:person.015674247510.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015674247510.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Texas at El Paso, TX 79968, El Paso, USA", 
          "id": "http://www.grid.ac/institutes/grid.267324.6", 
          "name": [
            "University of Texas at El Paso, TX 79968, El Paso, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kreinovich", 
        "givenName": "Vladik", 
        "id": "sg:person.012602771355.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012602771355.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Applied Biomathematics, 11733, Setauket, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.422751.7", 
          "name": [
            "Applied Biomathematics, 11733, Setauket, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferson", 
        "givenName": "Scott", 
        "id": "sg:person.0612335353.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612335353.21"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008-01-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "In many practical situations, we are not satisfied with the accuracy of the existing measurements. There are two possible ways to improve the measurement accuracy: \nfirst, instead of a single measurement, we can make repeated measurements; the additional information coming from these additional measurements can improve the accuracy of the result of this series of measurements;second, we can replace the current measuring instrument with a more accurate one; correspondingly, we can use a more accurate (and more expensive) measurement procedure provided by a measuring lab \u2013 e.g., a procedure that includes the use of a higher quality reagent.\nIn general, we can combine these two ways, and make repeated measurements with a more accurate measuring instrument. What is the appropriate trade-off between sample size and accuracy? In our previous paper, we solved this problem for the case of static measurements. In this paper, we extend the results to the case of dynamic measurements.", 
    "editor": [
      {
        "familyName": "Huynh", 
        "givenName": "Van-Nam", 
        "type": "Person"
      }, 
      {
        "familyName": "Nakamori", 
        "givenName": "Yoshiteru", 
        "type": "Person"
      }, 
      {
        "familyName": "Ono", 
        "givenName": "Hiroakira", 
        "type": "Person"
      }, 
      {
        "familyName": "Lawry", 
        "givenName": "Jonathan", 
        "type": "Person"
      }, 
      {
        "familyName": "Kreinovich", 
        "givenName": "Vkladik", 
        "type": "Person"
      }, 
      {
        "familyName": "Nguyen", 
        "givenName": "Hung T.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-77664-2_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-77663-5", 
        "978-3-540-77664-2"
      ], 
      "name": "Interval / Probabilistic Uncertainty and Non-Classical Logics", 
      "type": "Book"
    }, 
    "keywords": [
      "dynamic measurements", 
      "accurate measurement procedure", 
      "measurement accuracy", 
      "static measurements", 
      "measurement procedure", 
      "interval uncertainty", 
      "additional measurements", 
      "practical situations", 
      "high quality reagents", 
      "measurements", 
      "accurate ones", 
      "accuracy", 
      "previous paper", 
      "size", 
      "possible ways", 
      "single measurement", 
      "quality reagents", 
      "results", 
      "lab", 
      "uncertainty", 
      "procedure", 
      "instrument", 
      "problem", 
      "way", 
      "cases", 
      "one", 
      "use", 
      "additional information", 
      "repeated measurements", 
      "series", 
      "situation", 
      "reagents", 
      "information", 
      "sample size", 
      "paper"
    ], 
    "name": "Trade-Off between Sample Size and Accuracy: Case of Dynamic Measurements under Interval Uncertainty", 
    "pagination": "45-56", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011412564"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-77664-2_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-77664-2_5", 
      "https://app.dimensions.ai/details/publication/pub.1011412564"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_266.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-77664-2_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77664-2_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77664-2_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77664-2_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77664-2_5'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      23 PREDICATES      60 URIs      53 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-77664-2_5 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N0f315e1295264f1786ba2f61c87bcfec
4 schema:datePublished 2008-01-01
5 schema:datePublishedReg 2008-01-01
6 schema:description In many practical situations, we are not satisfied with the accuracy of the existing measurements. There are two possible ways to improve the measurement accuracy: first, instead of a single measurement, we can make repeated measurements; the additional information coming from these additional measurements can improve the accuracy of the result of this series of measurements;second, we can replace the current measuring instrument with a more accurate one; correspondingly, we can use a more accurate (and more expensive) measurement procedure provided by a measuring lab – e.g., a procedure that includes the use of a higher quality reagent. In general, we can combine these two ways, and make repeated measurements with a more accurate measuring instrument. What is the appropriate trade-off between sample size and accuracy? In our previous paper, we solved this problem for the case of static measurements. In this paper, we extend the results to the case of dynamic measurements.
7 schema:editor N8f4c1d6ca77245f4b2c0005a8b0dda82
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N2c4db042bf7f492394de43510b3e3012
12 schema:keywords accuracy
13 accurate measurement procedure
14 accurate ones
15 additional information
16 additional measurements
17 cases
18 dynamic measurements
19 high quality reagents
20 information
21 instrument
22 interval uncertainty
23 lab
24 measurement accuracy
25 measurement procedure
26 measurements
27 one
28 paper
29 possible ways
30 practical situations
31 previous paper
32 problem
33 procedure
34 quality reagents
35 reagents
36 repeated measurements
37 results
38 sample size
39 series
40 single measurement
41 situation
42 size
43 static measurements
44 uncertainty
45 use
46 way
47 schema:name Trade-Off between Sample Size and Accuracy: Case of Dynamic Measurements under Interval Uncertainty
48 schema:pagination 45-56
49 schema:productId N9bd5033fb60b4db2b4d9d1e992b04f73
50 Ncd827f3edf704d1eb3b990eea0855242
51 schema:publisher Nbb53f88250c24fbb82afeb0f2def68b1
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011412564
53 https://doi.org/10.1007/978-3-540-77664-2_5
54 schema:sdDatePublished 2021-11-01T18:53
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nc9e26d38720e4d958872582ae900b537
57 schema:url https://doi.org/10.1007/978-3-540-77664-2_5
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N040ddce5b1b34f2f944271830bdeb9a9 rdf:first sg:person.015674247510.09
62 rdf:rest Ne4e92a9ff35b423793685d3b92af0ec1
63 N0f315e1295264f1786ba2f61c87bcfec rdf:first sg:person.015415732053.58
64 rdf:rest N040ddce5b1b34f2f944271830bdeb9a9
65 N2c4db042bf7f492394de43510b3e3012 schema:isbn 978-3-540-77663-5
66 978-3-540-77664-2
67 schema:name Interval / Probabilistic Uncertainty and Non-Classical Logics
68 rdf:type schema:Book
69 N2e5d6264af38434282f25535e8f47c89 rdf:first N830cac720fe44502b159d9346a8bf6b4
70 rdf:rest Ne2363b26a5714e9996a5ff7fd869987e
71 N4e6dff250674430c99a9f788c1c1e764 schema:familyName Ono
72 schema:givenName Hiroakira
73 rdf:type schema:Person
74 N80e558fda2164c42a1cbd2858985a47b rdf:first N8880dcfa270b49c6be04c29b6b645492
75 rdf:rest rdf:nil
76 N81e77fca5b0b4b4f9c579a90d4629f96 schema:familyName Lawry
77 schema:givenName Jonathan
78 rdf:type schema:Person
79 N830cac720fe44502b159d9346a8bf6b4 schema:familyName Nakamori
80 schema:givenName Yoshiteru
81 rdf:type schema:Person
82 N8880dcfa270b49c6be04c29b6b645492 schema:familyName Nguyen
83 schema:givenName Hung T.
84 rdf:type schema:Person
85 N8bb6fecff73b40a19db44b145abdb953 rdf:first Na1210f2a8d6846bbb6528737a8a0207a
86 rdf:rest N80e558fda2164c42a1cbd2858985a47b
87 N8f4c1d6ca77245f4b2c0005a8b0dda82 rdf:first Na31a13e70d4e4a799897d1f2261b6ae5
88 rdf:rest N2e5d6264af38434282f25535e8f47c89
89 N98c03db0437448adbaf4f68cfedd449f rdf:first sg:person.0612335353.21
90 rdf:rest rdf:nil
91 N9bd5033fb60b4db2b4d9d1e992b04f73 schema:name doi
92 schema:value 10.1007/978-3-540-77664-2_5
93 rdf:type schema:PropertyValue
94 Na1210f2a8d6846bbb6528737a8a0207a schema:familyName Kreinovich
95 schema:givenName Vkladik
96 rdf:type schema:Person
97 Na31a13e70d4e4a799897d1f2261b6ae5 schema:familyName Huynh
98 schema:givenName Van-Nam
99 rdf:type schema:Person
100 Nbb53f88250c24fbb82afeb0f2def68b1 schema:name Springer Nature
101 rdf:type schema:Organisation
102 Nc9e26d38720e4d958872582ae900b537 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Ncd827f3edf704d1eb3b990eea0855242 schema:name dimensions_id
105 schema:value pub.1011412564
106 rdf:type schema:PropertyValue
107 Nd5ad354eb3ea467f8bd66778fe8a7f4d rdf:first N81e77fca5b0b4b4f9c579a90d4629f96
108 rdf:rest N8bb6fecff73b40a19db44b145abdb953
109 Ne2363b26a5714e9996a5ff7fd869987e rdf:first N4e6dff250674430c99a9f788c1c1e764
110 rdf:rest Nd5ad354eb3ea467f8bd66778fe8a7f4d
111 Ne4e92a9ff35b423793685d3b92af0ec1 rdf:first sg:person.012602771355.27
112 rdf:rest N98c03db0437448adbaf4f68cfedd449f
113 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
114 schema:name Economics
115 rdf:type schema:DefinedTerm
116 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
117 schema:name Applied Economics
118 rdf:type schema:DefinedTerm
119 sg:person.012602771355.27 schema:affiliation grid-institutes:grid.267324.6
120 schema:familyName Kreinovich
121 schema:givenName Vladik
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012602771355.27
123 rdf:type schema:Person
124 sg:person.015415732053.58 schema:affiliation grid-institutes:grid.24805.3b
125 schema:familyName Nguyen
126 schema:givenName Hung T.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015415732053.58
128 rdf:type schema:Person
129 sg:person.015674247510.09 schema:affiliation grid-institutes:grid.267324.6
130 schema:familyName Kosheleva
131 schema:givenName Olga
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015674247510.09
133 rdf:type schema:Person
134 sg:person.0612335353.21 schema:affiliation grid-institutes:grid.422751.7
135 schema:familyName Ferson
136 schema:givenName Scott
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612335353.21
138 rdf:type schema:Person
139 grid-institutes:grid.24805.3b schema:alternateName New Mexico State University, 88003, Las Cruces, NM, USA
140 schema:name New Mexico State University, 88003, Las Cruces, NM, USA
141 rdf:type schema:Organization
142 grid-institutes:grid.267324.6 schema:alternateName University of Texas at El Paso, TX 79968, El Paso, USA
143 schema:name University of Texas at El Paso, TX 79968, El Paso, USA
144 rdf:type schema:Organization
145 grid-institutes:grid.422751.7 schema:alternateName Applied Biomathematics, 11733, Setauket, NY, USA
146 schema:name Applied Biomathematics, 11733, Setauket, NY, USA
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...