The Oil Reservoir Ecosystem View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2010

AUTHORS

B. Ollivier* , D. Alazard

ABSTRACT

Petroleum reservoirs are considered to be anaerobic ecosystems inhabited by a wide range of microorganisms with various metabolic features, including chemolithoautotrophy and heterotrophy. Hence, these subterrestrial ecosystems may be the site of significant microbial activities due to the in situ presence of substantial amounts of electron donors (e.g., acetate) and electron acceptors (e.g., CO2). At geological scale, microbial processes may result in crude-oil biodegradation, as observed in numerous subsurface-biodegraded oil reservoirs. While several microorganisms retrieved from petroleum reservoirs should be considered as indigenous to these ecosystems, the presence of most of them could be the result of oil exploration and production and may have detrimental effects on oil industry activities. This is the case for sulfate-reducing bacteria (SRB), which are involved in oil souring and biocorrosion phenomena. In contrast, other types of microorganisms such as fermentative bacteria and methanoarchaea have suitable metabolisms making them candidates for use in Microbial Enhanced Oil Recovery (MEOR). More... »

PAGES

2259-2269

Book

TITLE

Handbook of Hydrocarbon and Lipid Microbiology

ISBN

978-3-540-77584-3
978-3-540-77587-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-77587-4_164

DOI

http://dx.doi.org/10.1007/978-3-540-77587-4_164

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035903084


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aix-Marseille University", 
          "id": "https://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Laboratoire de Microbiologie IRD, UMR 180, Universit\u00e9s de Provence et de la M\u00e9diterran\u00e9e, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ollivier*", 
        "givenName": "B.", 
        "id": "sg:person.0611312603.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611312603.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aix-Marseille University", 
          "id": "https://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Laboratoire de Microbiologie IRD, UMR 180, Universit\u00e9s de Provence et de la M\u00e9diterran\u00e9e, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alazard", 
        "givenName": "D.", 
        "id": "sg:person.01126534045.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126534045.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature06484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000876520", 
          "https://doi.org/10.1038/nature06484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0923-2508(03)00086-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006067207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0923-2508(03)00086-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006067207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1002434330514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008953654", 
          "https://doi.org/10.1023/a:1002434330514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002849900426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023731731", 
          "https://doi.org/10.1007/s002849900426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033585263", 
          "https://doi.org/10.1038/nature02321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033585263", 
          "https://doi.org/10.1038/nature02321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0883-2927(91)90059-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037374295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0883-2927(91)90059-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037374295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038293191", 
          "https://doi.org/10.1038/nature02134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038293191", 
          "https://doi.org/10.1038/nature02134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/305309a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040734925", 
          "https://doi.org/10.1038/305309a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2007.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052062905", 
          "https://doi.org/10.1038/ismej.2007.111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077159309", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/9781555817589.ch3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088813144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/9781555817589.ch4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088813145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/9781555817589.ch5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088813146"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010", 
    "datePublishedReg": "2010-01-01", 
    "description": "Petroleum reservoirs are considered to be anaerobic ecosystems inhabited by a wide range of microorganisms with various metabolic features, including chemolithoautotrophy and heterotrophy. Hence, these subterrestrial ecosystems may be the site of significant microbial activities due to the in situ presence of substantial amounts of electron donors (e.g., acetate) and electron acceptors (e.g., CO2). At geological scale, microbial processes may result in crude-oil biodegradation, as observed in numerous subsurface-biodegraded oil reservoirs. While several microorganisms retrieved from petroleum reservoirs should be considered as indigenous to these ecosystems, the presence of most of them could be the result of oil exploration and production and may have detrimental effects on oil industry activities. This is the case for sulfate-reducing bacteria (SRB), which are involved in oil souring and biocorrosion phenomena. In contrast, other types of microorganisms such as fermentative bacteria and methanoarchaea have suitable metabolisms making them candidates for use in Microbial Enhanced Oil Recovery (MEOR).", 
    "editor": [
      {
        "familyName": "Timmis", 
        "givenName": "Kenneth N.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-77587-4_164", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-77584-3", 
        "978-3-540-77587-4"
      ], 
      "name": "Handbook of Hydrocarbon and Lipid Microbiology", 
      "type": "Book"
    }, 
    "name": "The Oil Reservoir Ecosystem", 
    "pagination": "2259-2269", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035903084"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-77587-4_164"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ab07d1074501b4796211eabf1429250e906f6b10a15f98f95d23f8d6de98d75d"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-77587-4_164", 
      "https://app.dimensions.ai/details/publication/pub.1035903084"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_53010_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-77587-4_164"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77587-4_164'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77587-4_164'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77587-4_164'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77587-4_164'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-77587-4_164 schema:about anzsrc-for:06
2 anzsrc-for:0605
3 schema:author N42cc3395fa4941cda5d233f1426a6492
4 schema:citation sg:pub.10.1007/s002849900426
5 sg:pub.10.1023/a:1002434330514
6 sg:pub.10.1038/305309a0
7 sg:pub.10.1038/ismej.2007.111
8 sg:pub.10.1038/nature02134
9 sg:pub.10.1038/nature02321
10 sg:pub.10.1038/nature06484
11 https://app.dimensions.ai/details/publication/pub.1077159309
12 https://doi.org/10.1016/0883-2927(91)90059-x
13 https://doi.org/10.1016/s0923-2508(03)00086-x
14 https://doi.org/10.1128/9781555817589.ch3
15 https://doi.org/10.1128/9781555817589.ch4
16 https://doi.org/10.1128/9781555817589.ch5
17 schema:datePublished 2010
18 schema:datePublishedReg 2010-01-01
19 schema:description Petroleum reservoirs are considered to be anaerobic ecosystems inhabited by a wide range of microorganisms with various metabolic features, including chemolithoautotrophy and heterotrophy. Hence, these subterrestrial ecosystems may be the site of significant microbial activities due to the in situ presence of substantial amounts of electron donors (e.g., acetate) and electron acceptors (e.g., CO2). At geological scale, microbial processes may result in crude-oil biodegradation, as observed in numerous subsurface-biodegraded oil reservoirs. While several microorganisms retrieved from petroleum reservoirs should be considered as indigenous to these ecosystems, the presence of most of them could be the result of oil exploration and production and may have detrimental effects on oil industry activities. This is the case for sulfate-reducing bacteria (SRB), which are involved in oil souring and biocorrosion phenomena. In contrast, other types of microorganisms such as fermentative bacteria and methanoarchaea have suitable metabolisms making them candidates for use in Microbial Enhanced Oil Recovery (MEOR).
20 schema:editor N7bfd5148224c4714a46ddce1b4675474
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf Nd340e092944e4158b6afd7905236dd38
25 schema:name The Oil Reservoir Ecosystem
26 schema:pagination 2259-2269
27 schema:productId N2df1d5a71460402280a436e435367136
28 N96539576a4b04afdaeef4ab50b590663
29 Ndea6a968a5ca406aa83767cbf7814e39
30 schema:publisher Nb4a1e41af5e64858b5d646fd5c1c71dc
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035903084
32 https://doi.org/10.1007/978-3-540-77587-4_164
33 schema:sdDatePublished 2019-04-16T07:27
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nbcb639536ec7450f9c58d33c17a258c7
36 schema:url https://link.springer.com/10.1007%2F978-3-540-77587-4_164
37 sgo:license sg:explorer/license/
38 sgo:sdDataset chapters
39 rdf:type schema:Chapter
40 N2df1d5a71460402280a436e435367136 schema:name dimensions_id
41 schema:value pub.1035903084
42 rdf:type schema:PropertyValue
43 N42cc3395fa4941cda5d233f1426a6492 rdf:first sg:person.0611312603.56
44 rdf:rest N68cc7e85ded846a1b0f86a0c0489c6e0
45 N68cc7e85ded846a1b0f86a0c0489c6e0 rdf:first sg:person.01126534045.84
46 rdf:rest rdf:nil
47 N7bfd5148224c4714a46ddce1b4675474 rdf:first Nef46c77a38ff425ba92ea3a4b7abe5ca
48 rdf:rest rdf:nil
49 N96539576a4b04afdaeef4ab50b590663 schema:name readcube_id
50 schema:value ab07d1074501b4796211eabf1429250e906f6b10a15f98f95d23f8d6de98d75d
51 rdf:type schema:PropertyValue
52 Nb4a1e41af5e64858b5d646fd5c1c71dc schema:location Berlin, Heidelberg
53 schema:name Springer Berlin Heidelberg
54 rdf:type schema:Organisation
55 Nbcb639536ec7450f9c58d33c17a258c7 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Nd340e092944e4158b6afd7905236dd38 schema:isbn 978-3-540-77584-3
58 978-3-540-77587-4
59 schema:name Handbook of Hydrocarbon and Lipid Microbiology
60 rdf:type schema:Book
61 Ndea6a968a5ca406aa83767cbf7814e39 schema:name doi
62 schema:value 10.1007/978-3-540-77587-4_164
63 rdf:type schema:PropertyValue
64 Nef46c77a38ff425ba92ea3a4b7abe5ca schema:familyName Timmis
65 schema:givenName Kenneth N.
66 rdf:type schema:Person
67 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
68 schema:name Biological Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
71 schema:name Microbiology
72 rdf:type schema:DefinedTerm
73 sg:person.01126534045.84 schema:affiliation https://www.grid.ac/institutes/grid.5399.6
74 schema:familyName Alazard
75 schema:givenName D.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126534045.84
77 rdf:type schema:Person
78 sg:person.0611312603.56 schema:affiliation https://www.grid.ac/institutes/grid.5399.6
79 schema:familyName Ollivier*
80 schema:givenName B.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611312603.56
82 rdf:type schema:Person
83 sg:pub.10.1007/s002849900426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023731731
84 https://doi.org/10.1007/s002849900426
85 rdf:type schema:CreativeWork
86 sg:pub.10.1023/a:1002434330514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008953654
87 https://doi.org/10.1023/a:1002434330514
88 rdf:type schema:CreativeWork
89 sg:pub.10.1038/305309a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040734925
90 https://doi.org/10.1038/305309a0
91 rdf:type schema:CreativeWork
92 sg:pub.10.1038/ismej.2007.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052062905
93 https://doi.org/10.1038/ismej.2007.111
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/nature02134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038293191
96 https://doi.org/10.1038/nature02134
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/nature02321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033585263
99 https://doi.org/10.1038/nature02321
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/nature06484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000876520
102 https://doi.org/10.1038/nature06484
103 rdf:type schema:CreativeWork
104 https://app.dimensions.ai/details/publication/pub.1077159309 schema:CreativeWork
105 https://doi.org/10.1016/0883-2927(91)90059-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037374295
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s0923-2508(03)00086-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006067207
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1128/9781555817589.ch3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088813144
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1128/9781555817589.ch4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088813145
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1128/9781555817589.ch5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088813146
114 rdf:type schema:CreativeWork
115 https://www.grid.ac/institutes/grid.5399.6 schema:alternateName Aix-Marseille University
116 schema:name Laboratoire de Microbiologie IRD, UMR 180, Universités de Provence et de la Méditerranée, Marseille, France
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...