2008-01-01
AUTHORSHuaming Zhang , Sadish Sadasivam
ABSTRACTWe present a linear time algorithm that produces a planar polyline drawing for a plane graph with n vertices in a grid of size bounded by (p + 1) ×(n − 2), where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p \leq (\lfloor \frac{2n-5}{3}\rfloor)$\end{document}. It uses at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p \leq \lfloor\frac{2n-5}{3}\rfloor$\end{document} bends, and each edge uses at most one bend. Compared with the area optimal polyline drawing algorithm in [3], our algorithm uses a larger grid size bound in trade for a smaller bound on the total number of bends. Their bend bound is (n − 2). Our algorithm is based on a transformation from Schnyder’s realizers [6,7] of maximal plane graphs to transversal structures [4,5] for maximal internally 4-connected plane graphs. This transformation reveals important relations between the two combinatorial structures for plane graphs, which is of independent interest. More... »
PAGES213-218
Graph Drawing
ISBN
978-3-540-77536-2
978-3-540-77537-9
http://scigraph.springernature.com/pub.10.1007/978-3-540-77537-9_22
DOIhttp://dx.doi.org/10.1007/978-3-540-77537-9_22
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1050806102
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA",
"id": "http://www.grid.ac/institutes/grid.265893.3",
"name": [
"Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA"
],
"type": "Organization"
},
"familyName": "Zhang",
"givenName": "Huaming",
"id": "sg:person.012041227127.88",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012041227127.88"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA",
"id": "http://www.grid.ac/institutes/grid.265893.3",
"name": [
"Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA"
],
"type": "Organization"
},
"familyName": "Sadasivam",
"givenName": "Sadish",
"id": "sg:person.015341066775.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015341066775.96"
],
"type": "Person"
}
],
"datePublished": "2008-01-01",
"datePublishedReg": "2008-01-01",
"description": "We present a linear time algorithm that produces a planar polyline drawing for a plane graph with n vertices in a grid of size bounded by (p\u2009+\u20091) \u00d7(n\u2009\u2212\u20092), where \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$p \\leq (\\lfloor \\frac{2n-5}{3}\\rfloor)$\\end{document}. It uses at most \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$p \\leq \\lfloor\\frac{2n-5}{3}\\rfloor$\\end{document} bends, and each edge uses at most one bend. Compared with the area optimal polyline drawing algorithm in [3], our algorithm uses a larger grid size bound in trade for a smaller bound on the total number of bends. Their bend bound is (n\u2009\u2212\u20092). Our algorithm is based on a transformation from Schnyder\u2019s realizers [6,7] of maximal plane graphs to transversal structures [4,5] for maximal internally 4-connected plane graphs. This transformation reveals important relations between the two combinatorial structures for plane graphs, which is of independent interest.",
"editor": [
{
"familyName": "Hong",
"givenName": "Seok-Hee",
"type": "Person"
},
{
"familyName": "Nishizeki",
"givenName": "Takao",
"type": "Person"
},
{
"familyName": "Quan",
"givenName": "Wu",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-540-77537-9_22",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-540-77536-2",
"978-3-540-77537-9"
],
"name": "Graph Drawing",
"type": "Book"
},
"keywords": [
"plane graph",
"Planar Polyline Drawings",
"maximal plane graphs",
"grid of size",
"linear time algorithm",
"large grid sizes",
"combinatorial structure",
"polyline drawings",
"Schnyder\u2019s realizers",
"independent interest",
"grid size",
"transversal structure",
"time algorithm",
"graph",
"algorithm",
"important relations",
"polylines",
"vertices",
"realizers",
"grid",
"transformation",
"bend",
"structure",
"edge",
"size",
"total number",
"number",
"interest",
"relation",
"drawings",
"trade"
],
"name": "On Planar Polyline Drawings",
"pagination": "213-218",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1050806102"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-540-77537-9_22"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-540-77537-9_22",
"https://app.dimensions.ai/details/publication/pub.1050806102"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:47",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_421.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-540-77537-9_22"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77537-9_22'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77537-9_22'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77537-9_22'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77537-9_22'
This table displays all metadata directly associated to this object as RDF triples.
108 TRIPLES
23 PREDICATES
56 URIs
49 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-540-77537-9_22 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | Nbeddb87febcb4fa7bb72047a49bc7b83 |
4 | ″ | schema:datePublished | 2008-01-01 |
5 | ″ | schema:datePublishedReg | 2008-01-01 |
6 | ″ | schema:description | We present a linear time algorithm that produces a planar polyline drawing for a plane graph with n vertices in a grid of size bounded by (p + 1) ×(n − 2), where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p \leq (\lfloor \frac{2n-5}{3}\rfloor)$\end{document}. It uses at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p \leq \lfloor\frac{2n-5}{3}\rfloor$\end{document} bends, and each edge uses at most one bend. Compared with the area optimal polyline drawing algorithm in [3], our algorithm uses a larger grid size bound in trade for a smaller bound on the total number of bends. Their bend bound is (n − 2). Our algorithm is based on a transformation from Schnyder’s realizers [6,7] of maximal plane graphs to transversal structures [4,5] for maximal internally 4-connected plane graphs. This transformation reveals important relations between the two combinatorial structures for plane graphs, which is of independent interest. |
7 | ″ | schema:editor | N0d537f08c8df4790b401d6e618d8fe2d |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | Nccefd403d50d4af78b9bc04f71779759 |
12 | ″ | schema:keywords | Planar Polyline Drawings |
13 | ″ | ″ | Schnyder’s realizers |
14 | ″ | ″ | algorithm |
15 | ″ | ″ | bend |
16 | ″ | ″ | combinatorial structure |
17 | ″ | ″ | drawings |
18 | ″ | ″ | edge |
19 | ″ | ″ | graph |
20 | ″ | ″ | grid |
21 | ″ | ″ | grid of size |
22 | ″ | ″ | grid size |
23 | ″ | ″ | important relations |
24 | ″ | ″ | independent interest |
25 | ″ | ″ | interest |
26 | ″ | ″ | large grid sizes |
27 | ″ | ″ | linear time algorithm |
28 | ″ | ″ | maximal plane graphs |
29 | ″ | ″ | number |
30 | ″ | ″ | plane graph |
31 | ″ | ″ | polyline drawings |
32 | ″ | ″ | polylines |
33 | ″ | ″ | realizers |
34 | ″ | ″ | relation |
35 | ″ | ″ | size |
36 | ″ | ″ | structure |
37 | ″ | ″ | time algorithm |
38 | ″ | ″ | total number |
39 | ″ | ″ | trade |
40 | ″ | ″ | transformation |
41 | ″ | ″ | transversal structure |
42 | ″ | ″ | vertices |
43 | ″ | schema:name | On Planar Polyline Drawings |
44 | ″ | schema:pagination | 213-218 |
45 | ″ | schema:productId | N664899cf473d4ae0b53cecc2b9e972ee |
46 | ″ | ″ | N9460e75e7b8440bbb896c93ec893acd2 |
47 | ″ | schema:publisher | N7b2e16981682468fa1c2da029c02d62a |
48 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1050806102 |
49 | ″ | ″ | https://doi.org/10.1007/978-3-540-77537-9_22 |
50 | ″ | schema:sdDatePublished | 2022-05-20T07:47 |
51 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
52 | ″ | schema:sdPublisher | N627c9cec3d064d87b3f53203286349fc |
53 | ″ | schema:url | https://doi.org/10.1007/978-3-540-77537-9_22 |
54 | ″ | sgo:license | sg:explorer/license/ |
55 | ″ | sgo:sdDataset | chapters |
56 | ″ | rdf:type | schema:Chapter |
57 | N0d537f08c8df4790b401d6e618d8fe2d | rdf:first | N930f147eabb24a67a245b5c58ac01884 |
58 | ″ | rdf:rest | Nca7adcdfd5bf4a40be93eec43c08e476 |
59 | N627c9cec3d064d87b3f53203286349fc | schema:name | Springer Nature - SN SciGraph project |
60 | ″ | rdf:type | schema:Organization |
61 | N664899cf473d4ae0b53cecc2b9e972ee | schema:name | dimensions_id |
62 | ″ | schema:value | pub.1050806102 |
63 | ″ | rdf:type | schema:PropertyValue |
64 | N7b2e16981682468fa1c2da029c02d62a | schema:name | Springer Nature |
65 | ″ | rdf:type | schema:Organisation |
66 | N8f63f66c921a44f9b47b8899f2e38831 | schema:familyName | Nishizeki |
67 | ″ | schema:givenName | Takao |
68 | ″ | rdf:type | schema:Person |
69 | N930f147eabb24a67a245b5c58ac01884 | schema:familyName | Hong |
70 | ″ | schema:givenName | Seok-Hee |
71 | ″ | rdf:type | schema:Person |
72 | N9460e75e7b8440bbb896c93ec893acd2 | schema:name | doi |
73 | ″ | schema:value | 10.1007/978-3-540-77537-9_22 |
74 | ″ | rdf:type | schema:PropertyValue |
75 | N98ef3826c07848b99d4b4bf0daee4698 | schema:familyName | Quan |
76 | ″ | schema:givenName | Wu |
77 | ″ | rdf:type | schema:Person |
78 | N9ce58b5d372e415c92bbb50cfc1180c2 | rdf:first | sg:person.015341066775.96 |
79 | ″ | rdf:rest | rdf:nil |
80 | Nbeddb87febcb4fa7bb72047a49bc7b83 | rdf:first | sg:person.012041227127.88 |
81 | ″ | rdf:rest | N9ce58b5d372e415c92bbb50cfc1180c2 |
82 | Nca7adcdfd5bf4a40be93eec43c08e476 | rdf:first | N8f63f66c921a44f9b47b8899f2e38831 |
83 | ″ | rdf:rest | Nf78a235ce9bb49c89bb6c6bc3b842588 |
84 | Nccefd403d50d4af78b9bc04f71779759 | schema:isbn | 978-3-540-77536-2 |
85 | ″ | ″ | 978-3-540-77537-9 |
86 | ″ | schema:name | Graph Drawing |
87 | ″ | rdf:type | schema:Book |
88 | Nf78a235ce9bb49c89bb6c6bc3b842588 | rdf:first | N98ef3826c07848b99d4b4bf0daee4698 |
89 | ″ | rdf:rest | rdf:nil |
90 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
91 | ″ | schema:name | Mathematical Sciences |
92 | ″ | rdf:type | schema:DefinedTerm |
93 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
94 | ″ | schema:name | Pure Mathematics |
95 | ″ | rdf:type | schema:DefinedTerm |
96 | sg:person.012041227127.88 | schema:affiliation | grid-institutes:grid.265893.3 |
97 | ″ | schema:familyName | Zhang |
98 | ″ | schema:givenName | Huaming |
99 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012041227127.88 |
100 | ″ | rdf:type | schema:Person |
101 | sg:person.015341066775.96 | schema:affiliation | grid-institutes:grid.265893.3 |
102 | ″ | schema:familyName | Sadasivam |
103 | ″ | schema:givenName | Sadish |
104 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015341066775.96 |
105 | ″ | rdf:type | schema:Person |
106 | grid-institutes:grid.265893.3 | schema:alternateName | Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA |
107 | ″ | schema:name | Computer Science Department, University of Alabama in Huntsville, 35899, Huntsville, AL, USA |
108 | ″ | rdf:type | schema:Organization |