A Novel Motion Estimation Method Based on Normalized Cross Correlation for Video Compression View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008-01-01

AUTHORS

Shou-Der Wei , Wei-Hau Pan , Shang-Hong Lai

ABSTRACT

In this paper we propose to use the normalized cross correlation (NCC) as the similarity measure for block-based motion estimation (ME) to replace the sum of absolute difference (SAD) measure. NCC is a more suitable similarity measure than SAD for reducing the temporal redundancy in video comparison since we can obtain flatter residual after motion compensation by using the NCC as the similarity measure in the motion estimation. The flat residual results in large DC term and smaller AC term, which means less information is lost after quantization. Thus, we can obtain better quality in the compressed video. Experimental results show the proposed NCC-based motion estimation algorithm can provide similar PSNR but better SSIM than the traditional full search ME with the SAD measure. More... »

PAGES

338-347

Book

TITLE

Advances in Multimedia Modeling

ISBN

978-3-540-77407-5
978-3-540-77409-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-77409-9_32

DOI

http://dx.doi.org/10.1007/978-3-540-77409-9_32

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003615624


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Shou-Der", 
        "id": "sg:person.013224413773.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013224413773.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Wei-Hau", 
        "id": "sg:person.010476750713.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476750713.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lai", 
        "givenName": "Shang-Hong", 
        "id": "sg:person.010301330015.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010301330015.11"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008-01-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "In this paper we propose to use the normalized cross correlation (NCC) as the similarity measure for block-based motion estimation (ME) to replace the sum of absolute difference (SAD) measure. NCC is a more suitable similarity measure than SAD for reducing the temporal redundancy in video comparison since we can obtain flatter residual after motion compensation by using the NCC as the similarity measure in the motion estimation. The flat residual results in large DC term and smaller AC term, which means less information is lost after quantization. Thus, we can obtain better quality in the compressed video. Experimental results show the proposed NCC-based motion estimation algorithm can provide similar PSNR but better SSIM than the traditional full search ME with the SAD measure.", 
    "editor": [
      {
        "familyName": "Satoh", 
        "givenName": "Shin\u2019ichi", 
        "type": "Person"
      }, 
      {
        "familyName": "Nack", 
        "givenName": "Frank", 
        "type": "Person"
      }, 
      {
        "familyName": "Etoh", 
        "givenName": "Minoru", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-77409-9_32", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-77407-5", 
        "978-3-540-77409-9"
      ], 
      "name": "Advances in Multimedia Modeling", 
      "type": "Book"
    }, 
    "keywords": [
      "normalized cross correlation", 
      "motion estimation", 
      "similarity measure", 
      "block-based motion estimation", 
      "full search motion estimation", 
      "motion estimation algorithm", 
      "motion estimation method", 
      "absolute difference measures", 
      "novel motion estimation method", 
      "suitable similarity measure", 
      "video compression", 
      "temporal redundancy", 
      "similar PSNR", 
      "better SSIM", 
      "video comparison", 
      "motion compensation", 
      "cross correlation", 
      "estimation algorithm", 
      "AC term", 
      "SAD measures", 
      "experimental results", 
      "dc term", 
      "estimation method", 
      "PSNR", 
      "SSIM", 
      "video", 
      "good quality", 
      "algorithm", 
      "redundancy", 
      "estimation", 
      "residual results", 
      "difference measures", 
      "quantization", 
      "less information", 
      "information", 
      "compression", 
      "terms", 
      "SAD", 
      "quality", 
      "method", 
      "results", 
      "measures", 
      "compensation", 
      "sum", 
      "comparison", 
      "correlation", 
      "paper", 
      "flat residual results", 
      "large DC term", 
      "smaller AC term", 
      "NCC-based motion estimation algorithm", 
      "traditional full search ME", 
      "search ME"
    ], 
    "name": "A Novel Motion Estimation Method Based on Normalized Cross Correlation for Video Compression", 
    "pagination": "338-347", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003615624"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-77409-9_32"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-77409-9_32", 
      "https://app.dimensions.ai/details/publication/pub.1003615624"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_80.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-77409-9_32"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77409-9_32'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77409-9_32'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77409-9_32'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77409-9_32'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      23 PREDICATES      78 URIs      71 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-77409-9_32 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne6d981666f854eb5b194714cd45a4a58
4 schema:datePublished 2008-01-01
5 schema:datePublishedReg 2008-01-01
6 schema:description In this paper we propose to use the normalized cross correlation (NCC) as the similarity measure for block-based motion estimation (ME) to replace the sum of absolute difference (SAD) measure. NCC is a more suitable similarity measure than SAD for reducing the temporal redundancy in video comparison since we can obtain flatter residual after motion compensation by using the NCC as the similarity measure in the motion estimation. The flat residual results in large DC term and smaller AC term, which means less information is lost after quantization. Thus, we can obtain better quality in the compressed video. Experimental results show the proposed NCC-based motion estimation algorithm can provide similar PSNR but better SSIM than the traditional full search ME with the SAD measure.
7 schema:editor N0d9a56775a08480ca248e530792dd5b5
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N47a80f51a45543ecafdeb2683fe2d4e4
12 schema:keywords AC term
13 NCC-based motion estimation algorithm
14 PSNR
15 SAD
16 SAD measures
17 SSIM
18 absolute difference measures
19 algorithm
20 better SSIM
21 block-based motion estimation
22 comparison
23 compensation
24 compression
25 correlation
26 cross correlation
27 dc term
28 difference measures
29 estimation
30 estimation algorithm
31 estimation method
32 experimental results
33 flat residual results
34 full search motion estimation
35 good quality
36 information
37 large DC term
38 less information
39 measures
40 method
41 motion compensation
42 motion estimation
43 motion estimation algorithm
44 motion estimation method
45 normalized cross correlation
46 novel motion estimation method
47 paper
48 quality
49 quantization
50 redundancy
51 residual results
52 results
53 search ME
54 similar PSNR
55 similarity measure
56 smaller AC term
57 suitable similarity measure
58 sum
59 temporal redundancy
60 terms
61 traditional full search ME
62 video
63 video comparison
64 video compression
65 schema:name A Novel Motion Estimation Method Based on Normalized Cross Correlation for Video Compression
66 schema:pagination 338-347
67 schema:productId N39e5e7f633ad4da6b340475ada58496c
68 Nb680c0b14e2c48b8a04585139171773b
69 schema:publisher N5cc219d6267d4cf9ba490fe88b7dafd7
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003615624
71 https://doi.org/10.1007/978-3-540-77409-9_32
72 schema:sdDatePublished 2022-01-01T19:28
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Ndcecf9899c7645abaf758ce9fd6327c3
75 schema:url https://doi.org/10.1007/978-3-540-77409-9_32
76 sgo:license sg:explorer/license/
77 sgo:sdDataset chapters
78 rdf:type schema:Chapter
79 N02e951bbedd843089793a5c9f4feed1d schema:familyName Nack
80 schema:givenName Frank
81 rdf:type schema:Person
82 N0d9a56775a08480ca248e530792dd5b5 rdf:first Ndd1a8439e3444eb6a4b49ddc02bd314b
83 rdf:rest N3098ebd2a13b474fa5c5fbdd9a7dbbf6
84 N1635e59158254590bcab35c91843e1fb rdf:first N418ac9e73d2c437bbdea34e6d4b9747f
85 rdf:rest rdf:nil
86 N3098ebd2a13b474fa5c5fbdd9a7dbbf6 rdf:first N02e951bbedd843089793a5c9f4feed1d
87 rdf:rest N1635e59158254590bcab35c91843e1fb
88 N39e5e7f633ad4da6b340475ada58496c schema:name doi
89 schema:value 10.1007/978-3-540-77409-9_32
90 rdf:type schema:PropertyValue
91 N418ac9e73d2c437bbdea34e6d4b9747f schema:familyName Etoh
92 schema:givenName Minoru
93 rdf:type schema:Person
94 N47a80f51a45543ecafdeb2683fe2d4e4 schema:isbn 978-3-540-77407-5
95 978-3-540-77409-9
96 schema:name Advances in Multimedia Modeling
97 rdf:type schema:Book
98 N502111068ecb46d3812ee58a91c51c7a rdf:first sg:person.010301330015.11
99 rdf:rest rdf:nil
100 N5cc219d6267d4cf9ba490fe88b7dafd7 schema:name Springer Nature
101 rdf:type schema:Organisation
102 N75bcf6c64a794342b7fd61b0c128195e rdf:first sg:person.010476750713.22
103 rdf:rest N502111068ecb46d3812ee58a91c51c7a
104 Nb680c0b14e2c48b8a04585139171773b schema:name dimensions_id
105 schema:value pub.1003615624
106 rdf:type schema:PropertyValue
107 Ndcecf9899c7645abaf758ce9fd6327c3 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 Ndd1a8439e3444eb6a4b49ddc02bd314b schema:familyName Satoh
110 schema:givenName Shin’ichi
111 rdf:type schema:Person
112 Ne6d981666f854eb5b194714cd45a4a58 rdf:first sg:person.013224413773.06
113 rdf:rest N75bcf6c64a794342b7fd61b0c128195e
114 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
115 schema:name Information and Computing Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
118 schema:name Artificial Intelligence and Image Processing
119 rdf:type schema:DefinedTerm
120 sg:person.010301330015.11 schema:affiliation grid-institutes:grid.38348.34
121 schema:familyName Lai
122 schema:givenName Shang-Hong
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010301330015.11
124 rdf:type schema:Person
125 sg:person.010476750713.22 schema:affiliation grid-institutes:grid.38348.34
126 schema:familyName Pan
127 schema:givenName Wei-Hau
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476750713.22
129 rdf:type schema:Person
130 sg:person.013224413773.06 schema:affiliation grid-institutes:grid.38348.34
131 schema:familyName Wei
132 schema:givenName Shou-Der
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013224413773.06
134 rdf:type schema:Person
135 grid-institutes:grid.38348.34 schema:alternateName Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
136 schema:name Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...