Reinforcement Learning for Decision Making in Sequential Visual Attention View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007

AUTHORS

Lucas Paletta , Gerald Fritz

ABSTRACT

The innovation of this work is the provision of a system that learns visual encodings of attention patterns and that enables sequential attention for object detection in real world environments. The system embeds the saccadic decision procedure in a cascaded process where visual evidence is probed at the most informative image locations. It is based on the extraction of information theoretic saliency by determining informative local image descriptors that provide selected foci of interest. Both the local information in terms of code book vector responses, and the geometric information in the shift of attention contribute to the recognition state of a Markov decision process. A Q-learner performs then explorative search on useful actions towards salient locations, developing a strategy of useful action sequences being directed in state space towards the optimization of information maximization. The method is evaluated in experiments on real world object recognition and demonstrates efficient performance in outdoor tasks. More... »

PAGES

293-306

Book

TITLE

Attention in Cognitive Systems. Theories and Systems from an Interdisciplinary Viewpoint

ISBN

978-3-540-77342-9
978-3-540-77343-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-77343-6_19

DOI

http://dx.doi.org/10.1007/978-3-540-77343-6_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044765831


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "JOANNEUM RESEARCH Forschungsgesellschaft mbH, Institute of Digital Image Processing, Computational Perception Group, Wastiangasse 6, 8010 Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.8684.2", 
          "name": [
            "JOANNEUM RESEARCH Forschungsgesellschaft mbH, Institute of Digital Image Processing, Computational Perception Group, Wastiangasse 6, 8010 Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paletta", 
        "givenName": "Lucas", 
        "id": "sg:person.010060055125.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010060055125.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "JOANNEUM RESEARCH Forschungsgesellschaft mbH, Institute of Digital Image Processing, Computational Perception Group, Wastiangasse 6, 8010 Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.8684.2", 
          "name": [
            "JOANNEUM RESEARCH Forschungsgesellschaft mbH, Institute of Digital Image Processing, Computational Perception Group, Wastiangasse 6, 8010 Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fritz", 
        "givenName": "Gerald", 
        "id": "sg:person.011015636117.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011015636117.31"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "The innovation of this work is the provision of a system that learns visual encodings of attention patterns and that enables sequential attention for object detection in real world environments. The system embeds the saccadic decision procedure in a cascaded process where visual evidence is probed at the most informative image locations. It is based on the extraction of information theoretic saliency by determining informative local image descriptors that provide selected foci of interest. Both the local information in terms of code book vector responses, and the geometric information in the shift of attention contribute to the recognition state of a Markov decision process. A Q-learner performs then explorative search on useful actions towards salient locations, developing a strategy of useful action sequences being directed in state space towards the optimization of information maximization. The method is evaluated in experiments on real world object recognition and demonstrates efficient performance in outdoor tasks.", 
    "editor": [
      {
        "familyName": "Paletta", 
        "givenName": "Lucas", 
        "type": "Person"
      }, 
      {
        "familyName": "Rome", 
        "givenName": "Erich", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-77343-6_19", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-77342-9", 
        "978-3-540-77343-6"
      ], 
      "name": "Attention in Cognitive Systems. Theories and Systems from an Interdisciplinary Viewpoint", 
      "type": "Book"
    }, 
    "keywords": [
      "real-world object recognition", 
      "attention contribute", 
      "visual attention", 
      "attention patterns", 
      "sequential attention", 
      "visual encoding", 
      "salient locations", 
      "action sequences", 
      "object recognition", 
      "real-world environments", 
      "local image descriptors", 
      "Markov decision process", 
      "image descriptors", 
      "object detection", 
      "useful actions", 
      "world environment", 
      "outdoor tasks", 
      "explorative search", 
      "information maximization", 
      "recognition state", 
      "image location", 
      "decision process", 
      "local information", 
      "geometric information", 
      "attention", 
      "focus of interest", 
      "decision procedure", 
      "efficient performance", 
      "encoding", 
      "learners", 
      "task", 
      "saliency", 
      "state space", 
      "recognition", 
      "visual evidence", 
      "information", 
      "descriptors", 
      "system", 
      "decisions", 
      "maximization", 
      "process", 
      "performance", 
      "evidence", 
      "optimization", 
      "focus", 
      "search", 
      "environment", 
      "action", 
      "extraction", 
      "contributes", 
      "detection", 
      "location", 
      "strategies", 
      "space", 
      "patterns", 
      "response", 
      "innovation", 
      "work", 
      "experiments", 
      "interest", 
      "method", 
      "terms", 
      "provision", 
      "shift", 
      "state", 
      "sequence", 
      "vector responses", 
      "procedure"
    ], 
    "name": "Reinforcement Learning for Decision Making in Sequential Visual Attention", 
    "pagination": "293-306", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044765831"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-77343-6_19"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-77343-6_19", 
      "https://app.dimensions.ai/details/publication/pub.1044765831"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_162.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-77343-6_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77343-6_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77343-6_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77343-6_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77343-6_19'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      23 PREDICATES      94 URIs      87 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-77343-6_19 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N779a0cb9d3104df6aad406a29262fcee
4 schema:datePublished 2007
5 schema:datePublishedReg 2007-01-01
6 schema:description The innovation of this work is the provision of a system that learns visual encodings of attention patterns and that enables sequential attention for object detection in real world environments. The system embeds the saccadic decision procedure in a cascaded process where visual evidence is probed at the most informative image locations. It is based on the extraction of information theoretic saliency by determining informative local image descriptors that provide selected foci of interest. Both the local information in terms of code book vector responses, and the geometric information in the shift of attention contribute to the recognition state of a Markov decision process. A Q-learner performs then explorative search on useful actions towards salient locations, developing a strategy of useful action sequences being directed in state space towards the optimization of information maximization. The method is evaluated in experiments on real world object recognition and demonstrates efficient performance in outdoor tasks.
7 schema:editor Ne59a4e07f66046a0aa958a9973cbeb44
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N4fa3a2bec24b46948ccdd246428dc515
12 schema:keywords Markov decision process
13 action
14 action sequences
15 attention
16 attention contribute
17 attention patterns
18 contributes
19 decision procedure
20 decision process
21 decisions
22 descriptors
23 detection
24 efficient performance
25 encoding
26 environment
27 evidence
28 experiments
29 explorative search
30 extraction
31 focus
32 focus of interest
33 geometric information
34 image descriptors
35 image location
36 information
37 information maximization
38 innovation
39 interest
40 learners
41 local image descriptors
42 local information
43 location
44 maximization
45 method
46 object detection
47 object recognition
48 optimization
49 outdoor tasks
50 patterns
51 performance
52 procedure
53 process
54 provision
55 real-world environments
56 real-world object recognition
57 recognition
58 recognition state
59 response
60 saliency
61 salient locations
62 search
63 sequence
64 sequential attention
65 shift
66 space
67 state
68 state space
69 strategies
70 system
71 task
72 terms
73 useful actions
74 vector responses
75 visual attention
76 visual encoding
77 visual evidence
78 work
79 world environment
80 schema:name Reinforcement Learning for Decision Making in Sequential Visual Attention
81 schema:pagination 293-306
82 schema:productId N5643f2c8347d4301adc708a01eaba65f
83 N9cf2bad8d4a64177a2b793d1d6a9420e
84 schema:publisher N89484757a1f54e73b3e857e9a82b74eb
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044765831
86 https://doi.org/10.1007/978-3-540-77343-6_19
87 schema:sdDatePublished 2022-05-20T07:42
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Nf022186b1e8b44989de3789e4d03b3e7
90 schema:url https://doi.org/10.1007/978-3-540-77343-6_19
91 sgo:license sg:explorer/license/
92 sgo:sdDataset chapters
93 rdf:type schema:Chapter
94 N12739f9819d34881b9ab67ee3d6948ec rdf:first N321bed724f4747a8bf91e8c55aa5bfa6
95 rdf:rest rdf:nil
96 N2bc6564f7ba142778a941b2da1d8a517 rdf:first sg:person.011015636117.31
97 rdf:rest rdf:nil
98 N321bed724f4747a8bf91e8c55aa5bfa6 schema:familyName Rome
99 schema:givenName Erich
100 rdf:type schema:Person
101 N4fa3a2bec24b46948ccdd246428dc515 schema:isbn 978-3-540-77342-9
102 978-3-540-77343-6
103 schema:name Attention in Cognitive Systems. Theories and Systems from an Interdisciplinary Viewpoint
104 rdf:type schema:Book
105 N5643f2c8347d4301adc708a01eaba65f schema:name dimensions_id
106 schema:value pub.1044765831
107 rdf:type schema:PropertyValue
108 N6e89fca149884810aabc42adeb9c9aba schema:familyName Paletta
109 schema:givenName Lucas
110 rdf:type schema:Person
111 N779a0cb9d3104df6aad406a29262fcee rdf:first sg:person.010060055125.29
112 rdf:rest N2bc6564f7ba142778a941b2da1d8a517
113 N89484757a1f54e73b3e857e9a82b74eb schema:name Springer Nature
114 rdf:type schema:Organisation
115 N9cf2bad8d4a64177a2b793d1d6a9420e schema:name doi
116 schema:value 10.1007/978-3-540-77343-6_19
117 rdf:type schema:PropertyValue
118 Ne59a4e07f66046a0aa958a9973cbeb44 rdf:first N6e89fca149884810aabc42adeb9c9aba
119 rdf:rest N12739f9819d34881b9ab67ee3d6948ec
120 Nf022186b1e8b44989de3789e4d03b3e7 schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
123 schema:name Psychology and Cognitive Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
126 schema:name Psychology
127 rdf:type schema:DefinedTerm
128 sg:person.010060055125.29 schema:affiliation grid-institutes:grid.8684.2
129 schema:familyName Paletta
130 schema:givenName Lucas
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010060055125.29
132 rdf:type schema:Person
133 sg:person.011015636117.31 schema:affiliation grid-institutes:grid.8684.2
134 schema:familyName Fritz
135 schema:givenName Gerald
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011015636117.31
137 rdf:type schema:Person
138 grid-institutes:grid.8684.2 schema:alternateName JOANNEUM RESEARCH Forschungsgesellschaft mbH, Institute of Digital Image Processing, Computational Perception Group, Wastiangasse 6, 8010 Graz, Austria
139 schema:name JOANNEUM RESEARCH Forschungsgesellschaft mbH, Institute of Digital Image Processing, Computational Perception Group, Wastiangasse 6, 8010 Graz, Austria
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...