Fast Normalized Cross Correlation Based on Adaptive Multilevel Winner Update View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007-01-01

AUTHORS

Shou-Der Wei , Shang-Hong Lai

ABSTRACT

In this paper we propose a fast normalized cross correlation (NCC) algorithm for pattern matching based on combining adaptive multilevel partition with the winner update scheme. This winner update scheme is applied in conjunction with an upper bound for the cross correlation derived from Cauchy-Schwarz inequality. To apply the winner update scheme, we partition the summation of cross correlation into different levels with the partition order determined by the gradient energies of the partitioned regions in the template. Thus, this winner update scheme can be employed to skip the unnecessary calculation. Experimental results show the proposed algorithm is very efficient for image matching under different lighting conditions. More... »

PAGES

413-416

Book

TITLE

Advances in Multimedia Information Processing – PCM 2007

ISBN

978-3-540-77254-5
978-3-540-77255-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-77255-2_48

DOI

http://dx.doi.org/10.1007/978-3-540-77255-2_48

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038338356


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Shou-Der", 
        "id": "sg:person.013224413773.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013224413773.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lai", 
        "givenName": "Shang-Hong", 
        "id": "sg:person.010301330015.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010301330015.11"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-01-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "In this paper we propose a fast normalized cross correlation (NCC) algorithm for pattern matching based on combining adaptive multilevel partition with the winner update scheme. This winner update scheme is applied in conjunction with an upper bound for the cross correlation derived from Cauchy-Schwarz inequality. To apply the winner update scheme, we partition the summation of cross correlation into different levels with the partition order determined by the gradient energies of the partitioned regions in the template. Thus, this winner update scheme can be employed to skip the unnecessary calculation. Experimental results show the proposed algorithm is very efficient for image matching under different lighting conditions.", 
    "editor": [
      {
        "familyName": "Ip", 
        "givenName": "Horace H.-S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Au", 
        "givenName": "Oscar C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Leung", 
        "givenName": "Howard", 
        "type": "Person"
      }, 
      {
        "familyName": "Sun", 
        "givenName": "Ming-Ting", 
        "type": "Person"
      }, 
      {
        "familyName": "Ma", 
        "givenName": "Wei-Ying", 
        "type": "Person"
      }, 
      {
        "familyName": "Hu", 
        "givenName": "Shi-Min", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-77255-2_48", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-77254-5", 
        "978-3-540-77255-2"
      ], 
      "name": "Advances in Multimedia Information Processing \u2013 PCM 2007", 
      "type": "Book"
    }, 
    "keywords": [
      "normalized cross correlation", 
      "fast normalized cross correlation", 
      "update scheme", 
      "cross correlation", 
      "different lighting conditions", 
      "image matching", 
      "pattern matching", 
      "multilevel partition", 
      "unnecessary calculations", 
      "partition order", 
      "lighting conditions", 
      "experimental results", 
      "scheme", 
      "matching", 
      "algorithm", 
      "partition", 
      "different levels", 
      "Cauchy-Schwarz inequality", 
      "update", 
      "winners", 
      "gradient energy", 
      "template", 
      "order", 
      "results", 
      "summation", 
      "conjunction", 
      "correlation", 
      "calculations", 
      "inequality", 
      "levels", 
      "energy", 
      "region", 
      "conditions", 
      "paper", 
      "adaptive multilevel partition", 
      "winner update scheme", 
      "Adaptive Multilevel Winner Update", 
      "Multilevel Winner Update", 
      "Winner Update"
    ], 
    "name": "Fast Normalized Cross Correlation Based on Adaptive Multilevel Winner Update", 
    "pagination": "413-416", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038338356"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-77255-2_48"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-77255-2_48", 
      "https://app.dimensions.ai/details/publication/pub.1038338356"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_413.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-77255-2_48"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77255-2_48'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77255-2_48'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77255-2_48'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-77255-2_48'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      23 PREDICATES      64 URIs      57 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-77255-2_48 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nafcd0b9ff4344a2c9597354f9fa9e2a6
4 schema:datePublished 2007-01-01
5 schema:datePublishedReg 2007-01-01
6 schema:description In this paper we propose a fast normalized cross correlation (NCC) algorithm for pattern matching based on combining adaptive multilevel partition with the winner update scheme. This winner update scheme is applied in conjunction with an upper bound for the cross correlation derived from Cauchy-Schwarz inequality. To apply the winner update scheme, we partition the summation of cross correlation into different levels with the partition order determined by the gradient energies of the partitioned regions in the template. Thus, this winner update scheme can be employed to skip the unnecessary calculation. Experimental results show the proposed algorithm is very efficient for image matching under different lighting conditions.
7 schema:editor N99902581ac6b4f53b0922e57456e2af9
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nbc9fc4ae1de94ac1a7bdfc57b77155b9
12 schema:keywords Adaptive Multilevel Winner Update
13 Cauchy-Schwarz inequality
14 Multilevel Winner Update
15 Winner Update
16 adaptive multilevel partition
17 algorithm
18 calculations
19 conditions
20 conjunction
21 correlation
22 cross correlation
23 different levels
24 different lighting conditions
25 energy
26 experimental results
27 fast normalized cross correlation
28 gradient energy
29 image matching
30 inequality
31 levels
32 lighting conditions
33 matching
34 multilevel partition
35 normalized cross correlation
36 order
37 paper
38 partition
39 partition order
40 pattern matching
41 region
42 results
43 scheme
44 summation
45 template
46 unnecessary calculations
47 update
48 update scheme
49 winner update scheme
50 winners
51 schema:name Fast Normalized Cross Correlation Based on Adaptive Multilevel Winner Update
52 schema:pagination 413-416
53 schema:productId N3c434bbe39324f43817270ea7858adbf
54 N86f472318bf54ce9b35b7f654adbb5df
55 schema:publisher Nd2f2acad7b2447fd93280d1be1419565
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038338356
57 https://doi.org/10.1007/978-3-540-77255-2_48
58 schema:sdDatePublished 2021-12-01T20:09
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nce511fd408a64aad82c712ebe067a9d2
61 schema:url https://doi.org/10.1007/978-3-540-77255-2_48
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N06eebcbc6192409c95bc0137b4da2ae9 rdf:first N58f8ee1206e94191a85a01af45c7a6f3
66 rdf:rest rdf:nil
67 N1b067c7c9ae847bb8f2408a9be328f35 rdf:first sg:person.010301330015.11
68 rdf:rest rdf:nil
69 N38da783d17484a2091b8d73d3673e324 rdf:first Nd2f5c346b4d8407a9a3050961c38cec1
70 rdf:rest N6db254a9fd5e4520b62a27daad56d813
71 N3c434bbe39324f43817270ea7858adbf schema:name dimensions_id
72 schema:value pub.1038338356
73 rdf:type schema:PropertyValue
74 N58f8ee1206e94191a85a01af45c7a6f3 schema:familyName Hu
75 schema:givenName Shi-Min
76 rdf:type schema:Person
77 N6db254a9fd5e4520b62a27daad56d813 rdf:first Naca3e2ad4f114833bb7e384289c240e6
78 rdf:rest Nb7992b1175384b1882d01c352bf53bce
79 N7315a937576d47ecb158d3704ccbc50d schema:familyName Ip
80 schema:givenName Horace H.-S.
81 rdf:type schema:Person
82 N86f472318bf54ce9b35b7f654adbb5df schema:name doi
83 schema:value 10.1007/978-3-540-77255-2_48
84 rdf:type schema:PropertyValue
85 N99902581ac6b4f53b0922e57456e2af9 rdf:first N7315a937576d47ecb158d3704ccbc50d
86 rdf:rest N38da783d17484a2091b8d73d3673e324
87 N9cf54afa42ff4bd3b60d81b6f9c7b156 schema:familyName Sun
88 schema:givenName Ming-Ting
89 rdf:type schema:Person
90 N9ed4901b8a044a02b45d294abc184292 schema:familyName Ma
91 schema:givenName Wei-Ying
92 rdf:type schema:Person
93 Naca3e2ad4f114833bb7e384289c240e6 schema:familyName Leung
94 schema:givenName Howard
95 rdf:type schema:Person
96 Nafcd0b9ff4344a2c9597354f9fa9e2a6 rdf:first sg:person.013224413773.06
97 rdf:rest N1b067c7c9ae847bb8f2408a9be328f35
98 Nb7992b1175384b1882d01c352bf53bce rdf:first N9cf54afa42ff4bd3b60d81b6f9c7b156
99 rdf:rest Ne4117e148ff046da84e82bee6eaf29f5
100 Nbc9fc4ae1de94ac1a7bdfc57b77155b9 schema:isbn 978-3-540-77254-5
101 978-3-540-77255-2
102 schema:name Advances in Multimedia Information Processing – PCM 2007
103 rdf:type schema:Book
104 Nce511fd408a64aad82c712ebe067a9d2 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Nd2f2acad7b2447fd93280d1be1419565 schema:name Springer Nature
107 rdf:type schema:Organisation
108 Nd2f5c346b4d8407a9a3050961c38cec1 schema:familyName Au
109 schema:givenName Oscar C.
110 rdf:type schema:Person
111 Ne4117e148ff046da84e82bee6eaf29f5 rdf:first N9ed4901b8a044a02b45d294abc184292
112 rdf:rest N06eebcbc6192409c95bc0137b4da2ae9
113 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
114 schema:name Information and Computing Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
117 schema:name Artificial Intelligence and Image Processing
118 rdf:type schema:DefinedTerm
119 sg:person.010301330015.11 schema:affiliation grid-institutes:grid.38348.34
120 schema:familyName Lai
121 schema:givenName Shang-Hong
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010301330015.11
123 rdf:type schema:Person
124 sg:person.013224413773.06 schema:affiliation grid-institutes:grid.38348.34
125 schema:familyName Wei
126 schema:givenName Shou-Der
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013224413773.06
128 rdf:type schema:Person
129 grid-institutes:grid.38348.34 schema:alternateName Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
130 schema:name Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...