Texture-Based Objects Recognition for Vehicle Environment Perception Using a Multiband Camera View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

Yousun Kang , Kiyosumi Kidono , Yoshikatsu Kimura , Yoshiki Ninomiya

ABSTRACT

The vision-based intelligent vehicle systems for environment perception have required integration of image data acquired from multiple cameras. We developed multiband camera, which can simultaneously obtain both images of visible color and near infrared. In this paper, we present a texture-based objects recognition under road environment scene using a multiband image. The new color feature is proposed to cluster meaningful regions of a multiband image and the texture segmentation is utilized in classification of texture-based objects. Experimental results show that the proposed method effectively recognizes the texture-based objects including roads, buildings, trees, and sky, as well as faces of pedestrians. In the future, by integrating the shape-based objects recognition, which includes pedestrians, cars, and bicycles with texture-based objects recognition, the proposed system can expand into a complex scene understanding system for vehicle environment perception. More... »

PAGES

582-591

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-76856-2_57

DOI

http://dx.doi.org/10.1007/978-3-540-76856-2_57

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040010379


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.450319.a", 
          "name": [
            "Toyota Central R&D Labs., Inc., Aichi, 480-1192, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Yousun", 
        "id": "sg:person.010164244652.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010164244652.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.450319.a", 
          "name": [
            "Toyota Central R&D Labs., Inc., Aichi, 480-1192, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kidono", 
        "givenName": "Kiyosumi", 
        "id": "sg:person.013106525026.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013106525026.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.450319.a", 
          "name": [
            "Toyota Central R&D Labs., Inc., Aichi, 480-1192, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kimura", 
        "givenName": "Yoshikatsu", 
        "id": "sg:person.015354171502.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015354171502.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyota Central Research and Development Laboratories (Japan)", 
          "id": "https://www.grid.ac/institutes/grid.450319.a", 
          "name": [
            "Toyota Central R&D Labs., Inc., Aichi, 480-1192, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ninomiya", 
        "givenName": "Yoshiki", 
        "id": "sg:person.010246235477.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010246235477.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0146-664x(80)90047-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005851761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0019-9958(68)90241-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007077701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2003.10.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033610519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ietisy/e88-d.10.2380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059671382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.1000236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061155588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.6789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2002.801121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2002.802927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061657259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2007.1014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2007.56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812384737_0007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088714000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2007.383003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094758896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2002.1047421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095056815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivs.2007.4290249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095327748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2007.383146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095339977"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "The vision-based intelligent vehicle systems for environment perception have required integration of image data acquired from multiple cameras. We developed multiband camera, which can simultaneously obtain both images of visible color and near infrared. In this paper, we present a texture-based objects recognition under road environment scene using a multiband image. The new color feature is proposed to cluster meaningful regions of a multiband image and the texture segmentation is utilized in classification of texture-based objects. Experimental results show that the proposed method effectively recognizes the texture-based objects including roads, buildings, trees, and sky, as well as faces of pedestrians. In the future, by integrating the shape-based objects recognition, which includes pedestrians, cars, and bicycles with texture-based objects recognition, the proposed system can expand into a complex scene understanding system for vehicle environment perception.", 
    "editor": [
      {
        "familyName": "Bebis", 
        "givenName": "George", 
        "type": "Person"
      }, 
      {
        "familyName": "Boyle", 
        "givenName": "Richard", 
        "type": "Person"
      }, 
      {
        "familyName": "Parvin", 
        "givenName": "Bahram", 
        "type": "Person"
      }, 
      {
        "familyName": "Koracin", 
        "givenName": "Darko", 
        "type": "Person"
      }, 
      {
        "familyName": "Paragios", 
        "givenName": "Nikos", 
        "type": "Person"
      }, 
      {
        "familyName": "Tanveer", 
        "givenName": "Syeda-Mahmood", 
        "type": "Person"
      }, 
      {
        "familyName": "Ju", 
        "givenName": "Tao", 
        "type": "Person"
      }, 
      {
        "familyName": "Liu", 
        "givenName": "Zicheng", 
        "type": "Person"
      }, 
      {
        "familyName": "Coquillart", 
        "givenName": "Sabine", 
        "type": "Person"
      }, 
      {
        "familyName": "Cruz-Neira", 
        "givenName": "Carolina", 
        "type": "Person"
      }, 
      {
        "familyName": "M\u00fcller", 
        "givenName": "Torsten", 
        "type": "Person"
      }, 
      {
        "familyName": "Malzbender", 
        "givenName": "Tom", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-76856-2_57", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-76855-5"
      ], 
      "name": "Advances in Visual Computing", 
      "type": "Book"
    }, 
    "name": "Texture-Based Objects Recognition for Vehicle Environment Perception Using a Multiband Camera", 
    "pagination": "582-591", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-76856-2_57"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "be9811891d4c037ad679ed0411284c6090f2bfb0e1730f4afc6ead4a4f4473ec"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040010379"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-76856-2_57", 
      "https://app.dimensions.ai/details/publication/pub.1040010379"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89826_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-76856-2_57"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-76856-2_57'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-76856-2_57'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-76856-2_57'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-76856-2_57'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      23 PREDICATES      42 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-76856-2_57 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N075cf06f90574b4c89d068a7fe401902
4 schema:citation https://doi.org/10.1016/0146-664x(80)90047-7
5 https://doi.org/10.1016/j.rse.2003.10.021
6 https://doi.org/10.1016/s0019-9958(68)90241-6
7 https://doi.org/10.1093/ietisy/e88-d.10.2380
8 https://doi.org/10.1109/34.1000236
9 https://doi.org/10.1109/34.6789
10 https://doi.org/10.1109/cvpr.2007.383003
11 https://doi.org/10.1109/cvpr.2007.383146
12 https://doi.org/10.1109/icpr.2002.1047421
13 https://doi.org/10.1109/ivs.2007.4290249
14 https://doi.org/10.1109/tip.2002.801121
15 https://doi.org/10.1109/tits.2002.802927
16 https://doi.org/10.1109/tpami.2007.1014
17 https://doi.org/10.1109/tpami.2007.56
18 https://doi.org/10.1142/9789812384737_0007
19 schema:datePublished 2007
20 schema:datePublishedReg 2007-01-01
21 schema:description The vision-based intelligent vehicle systems for environment perception have required integration of image data acquired from multiple cameras. We developed multiband camera, which can simultaneously obtain both images of visible color and near infrared. In this paper, we present a texture-based objects recognition under road environment scene using a multiband image. The new color feature is proposed to cluster meaningful regions of a multiband image and the texture segmentation is utilized in classification of texture-based objects. Experimental results show that the proposed method effectively recognizes the texture-based objects including roads, buildings, trees, and sky, as well as faces of pedestrians. In the future, by integrating the shape-based objects recognition, which includes pedestrians, cars, and bicycles with texture-based objects recognition, the proposed system can expand into a complex scene understanding system for vehicle environment perception.
22 schema:editor N56bdc8c4bec44d0496b81f60d0d0b492
23 schema:genre chapter
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N94ca7df6b3ee40de9849edca6dfc678c
27 schema:name Texture-Based Objects Recognition for Vehicle Environment Perception Using a Multiband Camera
28 schema:pagination 582-591
29 schema:productId N39f8b76778db47399120fdc10628c6c9
30 N40674f315dbe4bbe94e28ea09f6c5234
31 N82e59c35ae534df4bd3cfaf399145526
32 schema:publisher N655c7b00b184462593e8ddd6973f449f
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040010379
34 https://doi.org/10.1007/978-3-540-76856-2_57
35 schema:sdDatePublished 2019-04-16T05:50
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N462c75a32696453fb4ff1e766f863a7e
38 schema:url https://link.springer.com/10.1007%2F978-3-540-76856-2_57
39 sgo:license sg:explorer/license/
40 sgo:sdDataset chapters
41 rdf:type schema:Chapter
42 N00678e534124411c9c3ff4b7418e6415 rdf:first sg:person.010246235477.54
43 rdf:rest rdf:nil
44 N075cf06f90574b4c89d068a7fe401902 rdf:first sg:person.010164244652.09
45 rdf:rest N4a83a169848c4027b1c6b4fa15acc611
46 N0799bebf92534fdaaa1f16920e1956e5 schema:familyName Ju
47 schema:givenName Tao
48 rdf:type schema:Person
49 N11c64bccc649483487f086050d673370 rdf:first N17c87fa9f41e42eeb4f5f3f21541ad9b
50 rdf:rest N18e7e4f19257413cb96de8a5de0cd81c
51 N14eea1e24eef40a88f0addd2ed9e7980 schema:familyName Liu
52 schema:givenName Zicheng
53 rdf:type schema:Person
54 N17c87fa9f41e42eeb4f5f3f21541ad9b schema:familyName Coquillart
55 schema:givenName Sabine
56 rdf:type schema:Person
57 N18e7e4f19257413cb96de8a5de0cd81c rdf:first N625c6296813c49ce93d05b93c88dcd45
58 rdf:rest N46595a736cc04453aef17300f921b1ad
59 N1fd8c79ffa194508a737b2813b2887ae schema:familyName Koracin
60 schema:givenName Darko
61 rdf:type schema:Person
62 N256c24ffd88d4867897e32b8e993d017 rdf:first N428565a7bdb743f8a07c58a11e1da301
63 rdf:rest rdf:nil
64 N36af69f10fca4b6e8264bfafea52f8f5 schema:familyName Paragios
65 schema:givenName Nikos
66 rdf:type schema:Person
67 N39f8b76778db47399120fdc10628c6c9 schema:name doi
68 schema:value 10.1007/978-3-540-76856-2_57
69 rdf:type schema:PropertyValue
70 N40674f315dbe4bbe94e28ea09f6c5234 schema:name dimensions_id
71 schema:value pub.1040010379
72 rdf:type schema:PropertyValue
73 N428565a7bdb743f8a07c58a11e1da301 schema:familyName Malzbender
74 schema:givenName Tom
75 rdf:type schema:Person
76 N462c75a32696453fb4ff1e766f863a7e schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N46595a736cc04453aef17300f921b1ad rdf:first Nd502902ff7084f01a3e6f84b3ff4acaa
79 rdf:rest N256c24ffd88d4867897e32b8e993d017
80 N4a83a169848c4027b1c6b4fa15acc611 rdf:first sg:person.013106525026.63
81 rdf:rest N4cbbab3c26c1428592bc2b94275d637e
82 N4cbbab3c26c1428592bc2b94275d637e rdf:first sg:person.015354171502.03
83 rdf:rest N00678e534124411c9c3ff4b7418e6415
84 N4e76054a672d4114935c5b78e1898ab9 rdf:first Na0c1b60fd3e74b98bb5a0e75faf84933
85 rdf:rest Nf47f406016aa416aaac197bec9b41fb2
86 N56bdc8c4bec44d0496b81f60d0d0b492 rdf:first Nc3869ead209d43fea5950a01260a2fb6
87 rdf:rest Nbef18a1119bf4d17a2b5481ca4e7383d
88 N625c6296813c49ce93d05b93c88dcd45 schema:familyName Cruz-Neira
89 schema:givenName Carolina
90 rdf:type schema:Person
91 N655c7b00b184462593e8ddd6973f449f schema:location Berlin, Heidelberg
92 schema:name Springer Berlin Heidelberg
93 rdf:type schema:Organisation
94 N7e959663ca784db697ecdaa9368e7e07 rdf:first N0799bebf92534fdaaa1f16920e1956e5
95 rdf:rest Nffc996ebe18b46c6a02cfba092ff6ec4
96 N7f09bba417af4777bfef5b1adba132d2 schema:familyName Tanveer
97 schema:givenName Syeda-Mahmood
98 rdf:type schema:Person
99 N82e59c35ae534df4bd3cfaf399145526 schema:name readcube_id
100 schema:value be9811891d4c037ad679ed0411284c6090f2bfb0e1730f4afc6ead4a4f4473ec
101 rdf:type schema:PropertyValue
102 N9473b39a57b340a5b9882bb71d6ab6b1 rdf:first N7f09bba417af4777bfef5b1adba132d2
103 rdf:rest N7e959663ca784db697ecdaa9368e7e07
104 N94ca7df6b3ee40de9849edca6dfc678c schema:isbn 978-3-540-76855-5
105 schema:name Advances in Visual Computing
106 rdf:type schema:Book
107 Na0c1b60fd3e74b98bb5a0e75faf84933 schema:familyName Parvin
108 schema:givenName Bahram
109 rdf:type schema:Person
110 Nbef18a1119bf4d17a2b5481ca4e7383d rdf:first Nca0bfd4822bf48b588b3d8890daa5834
111 rdf:rest N4e76054a672d4114935c5b78e1898ab9
112 Nc3869ead209d43fea5950a01260a2fb6 schema:familyName Bebis
113 schema:givenName George
114 rdf:type schema:Person
115 Nca0bfd4822bf48b588b3d8890daa5834 schema:familyName Boyle
116 schema:givenName Richard
117 rdf:type schema:Person
118 Nd502902ff7084f01a3e6f84b3ff4acaa schema:familyName Müller
119 schema:givenName Torsten
120 rdf:type schema:Person
121 Nf10e42ced0a340b5b7e1a0dc330d3466 rdf:first N36af69f10fca4b6e8264bfafea52f8f5
122 rdf:rest N9473b39a57b340a5b9882bb71d6ab6b1
123 Nf47f406016aa416aaac197bec9b41fb2 rdf:first N1fd8c79ffa194508a737b2813b2887ae
124 rdf:rest Nf10e42ced0a340b5b7e1a0dc330d3466
125 Nffc996ebe18b46c6a02cfba092ff6ec4 rdf:first N14eea1e24eef40a88f0addd2ed9e7980
126 rdf:rest N11c64bccc649483487f086050d673370
127 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
128 schema:name Information and Computing Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
131 schema:name Artificial Intelligence and Image Processing
132 rdf:type schema:DefinedTerm
133 sg:person.010164244652.09 schema:affiliation https://www.grid.ac/institutes/grid.450319.a
134 schema:familyName Kang
135 schema:givenName Yousun
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010164244652.09
137 rdf:type schema:Person
138 sg:person.010246235477.54 schema:affiliation https://www.grid.ac/institutes/grid.450319.a
139 schema:familyName Ninomiya
140 schema:givenName Yoshiki
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010246235477.54
142 rdf:type schema:Person
143 sg:person.013106525026.63 schema:affiliation https://www.grid.ac/institutes/grid.450319.a
144 schema:familyName Kidono
145 schema:givenName Kiyosumi
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013106525026.63
147 rdf:type schema:Person
148 sg:person.015354171502.03 schema:affiliation https://www.grid.ac/institutes/grid.450319.a
149 schema:familyName Kimura
150 schema:givenName Yoshikatsu
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015354171502.03
152 rdf:type schema:Person
153 https://doi.org/10.1016/0146-664x(80)90047-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005851761
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.rse.2003.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033610519
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s0019-9958(68)90241-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007077701
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1093/ietisy/e88-d.10.2380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059671382
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/34.1000236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061155588
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/34.6789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156804
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/cvpr.2007.383003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094758896
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/cvpr.2007.383146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095339977
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/icpr.2002.1047421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095056815
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/ivs.2007.4290249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095327748
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tip.2002.801121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640738
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/tits.2002.802927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657259
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/tpami.2007.1014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743153
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/tpami.2007.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743347
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1142/9789812384737_0007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088714000
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.450319.a schema:alternateName Toyota Central Research and Development Laboratories (Japan)
184 schema:name Toyota Central R&D Labs., Inc., Aichi, 480-1192, Japan
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...