In Between Photosynthesis and Photoinhibition: The Fundamental Role of Carotenoids and Carotenoid-Binding Proteins in Photoprotection View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008-01-01

AUTHORS

G. Bonente , L. Dall’Osto , R. Bassi

ABSTRACT

During operation of oxygenic photosynthesis, highly reactive molecules such as excited chlorophylls are placed in an environment, the chloroplast. This is probably the very spot where oxygen concentration is the highest on earth. There are two major sources of reactive oxygen species (ROS) in the photosynthetic apparatus. The first source is electron transport, where electrons are extracted from water and transported to NADP+. The powerhouses of photosynthetic electron transport are the PSI and PSII reaction centers, which transfer one electron at time. Now, relatively stable oxygen forms are, respectively, the most oxidized one (O2) and the most reduced one (H2O). All the other intermediate redox states are highly reactive and are, in fact, called ROS. It can easily be understood that during a multistep electron transport chain, the occasions in which O2 can be exposed to reduction by a single electron thus yielding Superoxide are easily produced. Moreover, in PSII, the site where electrons are extracted one by one from water, intermediate redox states may be produced.This article reviews several photoprotective processes that occur within chloroplasts of eukaryotic photosynthetic organisms, starting with medium and long-term response strategies to photooxidative stress, as state transition and acclimation. Following, a particular emphasis will be laid on the molecular mechanisms, which prevents ROS formation or participate in ROS detoxification inside the chloroplast. In these mechanisms, carotenoids and carotenoids-binding proteins, which belong to the Lhc family, have a key role. More... »

PAGES

29-46

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-76782-4_3

DOI

http://dx.doi.org/10.1007/978-3-540-76782-4_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036816085


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento Scientifico e Tecnologico, Universit\u00e0 di Verona, Strada le Grazie 15, 37134, Verona, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5611.3", 
          "name": [
            "Laboratoire de G\u00e9n\u00e9tique et de Biophysique des Plantes, Facult\u00e9 de Sciences de Luminy, Universit\u00e9 de Marseille, Marseille Cedex 9, France", 
            "Dipartimento Scientifico e Tecnologico, Universit\u00e0 di Verona, Strada le Grazie 15, 37134, Verona, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonente", 
        "givenName": "G.", 
        "id": "sg:person.01113534143.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113534143.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento Scientifico e Tecnologico, Universit\u00e0 di Verona, Strada le Grazie 15, 37134, Verona, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5611.3", 
          "name": [
            "Dipartimento Scientifico e Tecnologico, Universit\u00e0 di Verona, Strada le Grazie 15, 37134, Verona, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dall\u2019Osto", 
        "givenName": "L.", 
        "id": "sg:person.01360021350.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360021350.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "D\u00e9partement de Biologie \u2013 Case 901, Facult\u00e9 des Sciences de Luminy, Universit\u00e9 Aix-Marseille II, LGBP, 163, Avenue de Luminy, 13288, Marseille Cedex 09, France", 
          "id": "http://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Dipartimento Scientifico e Tecnologico, Universit\u00e0 di Verona, Strada le Grazie 15, 37134, Verona, Italy", 
            "D\u00e9partement de Biologie \u2013 Case 901, Facult\u00e9 des Sciences de Luminy, Universit\u00e9 Aix-Marseille II, LGBP, 163, Avenue de Luminy, 13288, Marseille Cedex 09, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bassi", 
        "givenName": "R.", 
        "id": "sg:person.0605371157.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008-01-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "During operation of oxygenic photosynthesis, highly reactive molecules such as excited chlorophylls are placed in an environment, the chloroplast. This is probably the very spot where oxygen concentration is the highest on earth. There are two major sources of reactive oxygen species (ROS) in the photosynthetic apparatus. The first source is electron transport, where electrons are extracted from water and transported to NADP+. The powerhouses of photosynthetic electron transport are the PSI and PSII reaction centers, which transfer one electron at time. Now, relatively stable oxygen forms are, respectively, the most oxidized one (O2) and the most reduced one (H2O). All the other intermediate redox states are highly reactive and are, in fact, called ROS. It can easily be understood that during a multistep electron transport chain, the occasions in which O2 can be exposed to reduction by a single electron thus yielding Superoxide are easily produced. Moreover, in PSII, the site where electrons are extracted one by one from water, intermediate redox states may be produced.This article reviews several photoprotective processes that occur within chloroplasts of eukaryotic photosynthetic organisms, starting with medium and long-term response strategies to photooxidative stress, as state transition and acclimation. Following, a particular emphasis will be laid on the molecular mechanisms, which prevents ROS formation or participate in ROS detoxification inside the chloroplast. In these mechanisms, carotenoids and carotenoids-binding proteins, which belong to the Lhc family, have a key role.", 
    "editor": [
      {
        "familyName": "Pavesi", 
        "givenName": "Lorenzo", 
        "type": "Person"
      }, 
      {
        "familyName": "Fauchet", 
        "givenName": "Philippe M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-76782-4_3", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-76779-4", 
        "978-3-540-76782-4"
      ], 
      "name": "Biophotonics", 
      "type": "Book"
    }, 
    "keywords": [
      "intermediate redox state", 
      "redox state", 
      "electron transport", 
      "reaction centers", 
      "reactive molecules", 
      "excited chlorophyll", 
      "oxygen forms", 
      "reactive oxygen species", 
      "eukaryotic photosynthetic organisms", 
      "oxygenic photosynthesis", 
      "PSII reaction centers", 
      "photosynthetic electron transport", 
      "electrons", 
      "single electron", 
      "photosynthetic organisms", 
      "photoprotective processes", 
      "LHC family", 
      "water", 
      "electron transport chain", 
      "oxygen species", 
      "molecules", 
      "oxygen concentration", 
      "O2", 
      "transport chain", 
      "chain", 
      "photosynthetic apparatus", 
      "carotenoid-binding protein", 
      "carotenoids", 
      "formation", 
      "ROS formation", 
      "transport", 
      "particular emphasis", 
      "superoxide", 
      "photosynthesis", 
      "concentration", 
      "mechanism", 
      "key role", 
      "PSII", 
      "state", 
      "major source", 
      "psi", 
      "species", 
      "photoprotection", 
      "protein", 
      "sites", 
      "transition", 
      "detoxification", 
      "source", 
      "chloroplasts", 
      "reduction", 
      "process", 
      "photooxidative stress", 
      "state transitions", 
      "fundamental role", 
      "chlorophyll", 
      "Earth", 
      "form", 
      "apparatus", 
      "environment", 
      "center", 
      "organisms", 
      "molecular mechanisms", 
      "photoinhibition", 
      "strategies", 
      "emphasis", 
      "time", 
      "role", 
      "spots", 
      "fact", 
      "very spot", 
      "ROS detoxification", 
      "family", 
      "operation", 
      "first source", 
      "article", 
      "stress", 
      "occasions", 
      "powerhouse", 
      "acclimation", 
      "response strategies"
    ], 
    "name": "In Between Photosynthesis and Photoinhibition: The Fundamental Role of Carotenoids and Carotenoid-Binding Proteins in Photoprotection", 
    "pagination": "29-46", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036816085"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-76782-4_3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-76782-4_3", 
      "https://app.dimensions.ai/details/publication/pub.1036816085"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_26.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-76782-4_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-76782-4_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-76782-4_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-76782-4_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-76782-4_3'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      22 PREDICATES      104 URIs      97 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-76782-4_3 schema:about anzsrc-for:06
2 anzsrc-for:0607
3 schema:author N5fd2e50dc5c0442ab337023303ff362b
4 schema:datePublished 2008-01-01
5 schema:datePublishedReg 2008-01-01
6 schema:description During operation of oxygenic photosynthesis, highly reactive molecules such as excited chlorophylls are placed in an environment, the chloroplast. This is probably the very spot where oxygen concentration is the highest on earth. There are two major sources of reactive oxygen species (ROS) in the photosynthetic apparatus. The first source is electron transport, where electrons are extracted from water and transported to NADP+. The powerhouses of photosynthetic electron transport are the PSI and PSII reaction centers, which transfer one electron at time. Now, relatively stable oxygen forms are, respectively, the most oxidized one (O2) and the most reduced one (H2O). All the other intermediate redox states are highly reactive and are, in fact, called ROS. It can easily be understood that during a multistep electron transport chain, the occasions in which O2 can be exposed to reduction by a single electron thus yielding Superoxide are easily produced. Moreover, in PSII, the site where electrons are extracted one by one from water, intermediate redox states may be produced.This article reviews several photoprotective processes that occur within chloroplasts of eukaryotic photosynthetic organisms, starting with medium and long-term response strategies to photooxidative stress, as state transition and acclimation. Following, a particular emphasis will be laid on the molecular mechanisms, which prevents ROS formation or participate in ROS detoxification inside the chloroplast. In these mechanisms, carotenoids and carotenoids-binding proteins, which belong to the Lhc family, have a key role.
7 schema:editor N1ec0cdbee0824923b211aa2a7bce3243
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N5bef04d472a741409c10ca090f5aab7c
11 schema:keywords Earth
12 LHC family
13 O2
14 PSII
15 PSII reaction centers
16 ROS detoxification
17 ROS formation
18 acclimation
19 apparatus
20 article
21 carotenoid-binding protein
22 carotenoids
23 center
24 chain
25 chlorophyll
26 chloroplasts
27 concentration
28 detoxification
29 electron transport
30 electron transport chain
31 electrons
32 emphasis
33 environment
34 eukaryotic photosynthetic organisms
35 excited chlorophyll
36 fact
37 family
38 first source
39 form
40 formation
41 fundamental role
42 intermediate redox state
43 key role
44 major source
45 mechanism
46 molecular mechanisms
47 molecules
48 occasions
49 operation
50 organisms
51 oxygen concentration
52 oxygen forms
53 oxygen species
54 oxygenic photosynthesis
55 particular emphasis
56 photoinhibition
57 photooxidative stress
58 photoprotection
59 photoprotective processes
60 photosynthesis
61 photosynthetic apparatus
62 photosynthetic electron transport
63 photosynthetic organisms
64 powerhouse
65 process
66 protein
67 psi
68 reaction centers
69 reactive molecules
70 reactive oxygen species
71 redox state
72 reduction
73 response strategies
74 role
75 single electron
76 sites
77 source
78 species
79 spots
80 state
81 state transitions
82 strategies
83 stress
84 superoxide
85 time
86 transition
87 transport
88 transport chain
89 very spot
90 water
91 schema:name In Between Photosynthesis and Photoinhibition: The Fundamental Role of Carotenoids and Carotenoid-Binding Proteins in Photoprotection
92 schema:pagination 29-46
93 schema:productId Ndd5a72ded9bb49daa9869edb5b08acb4
94 Nf6c737de3b674407b64924c8fe1aa55b
95 schema:publisher Nbfd875ba7f8e4a3a92413deb59af56a6
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036816085
97 https://doi.org/10.1007/978-3-540-76782-4_3
98 schema:sdDatePublished 2022-09-02T16:14
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N8ce63d87431b4631829fe39c756cd5aa
101 schema:url https://doi.org/10.1007/978-3-540-76782-4_3
102 sgo:license sg:explorer/license/
103 sgo:sdDataset chapters
104 rdf:type schema:Chapter
105 N1ec0cdbee0824923b211aa2a7bce3243 rdf:first N5a095ec9a5ae4eddbaecd23ebf664ba7
106 rdf:rest N3aa685bf92224d85b8e79ea7b74195de
107 N3aa685bf92224d85b8e79ea7b74195de rdf:first Nec82be7c2d8940cd9e08ae4fd2ca8607
108 rdf:rest rdf:nil
109 N5a095ec9a5ae4eddbaecd23ebf664ba7 schema:familyName Pavesi
110 schema:givenName Lorenzo
111 rdf:type schema:Person
112 N5bef04d472a741409c10ca090f5aab7c schema:isbn 978-3-540-76779-4
113 978-3-540-76782-4
114 schema:name Biophotonics
115 rdf:type schema:Book
116 N5fd2e50dc5c0442ab337023303ff362b rdf:first sg:person.01113534143.42
117 rdf:rest Na1ea63c54ee240589f505df6e623808f
118 N8ce63d87431b4631829fe39c756cd5aa schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 Na1ea63c54ee240589f505df6e623808f rdf:first sg:person.01360021350.97
121 rdf:rest Nfc164173f71943ad8a6ddddf9184171a
122 Nbfd875ba7f8e4a3a92413deb59af56a6 schema:name Springer Nature
123 rdf:type schema:Organisation
124 Ndd5a72ded9bb49daa9869edb5b08acb4 schema:name dimensions_id
125 schema:value pub.1036816085
126 rdf:type schema:PropertyValue
127 Nec82be7c2d8940cd9e08ae4fd2ca8607 schema:familyName Fauchet
128 schema:givenName Philippe M.
129 rdf:type schema:Person
130 Nf6c737de3b674407b64924c8fe1aa55b schema:name doi
131 schema:value 10.1007/978-3-540-76782-4_3
132 rdf:type schema:PropertyValue
133 Nfc164173f71943ad8a6ddddf9184171a rdf:first sg:person.0605371157.35
134 rdf:rest rdf:nil
135 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
136 schema:name Biological Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
139 schema:name Plant Biology
140 rdf:type schema:DefinedTerm
141 sg:person.01113534143.42 schema:affiliation grid-institutes:grid.5611.3
142 schema:familyName Bonente
143 schema:givenName G.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113534143.42
145 rdf:type schema:Person
146 sg:person.01360021350.97 schema:affiliation grid-institutes:grid.5611.3
147 schema:familyName Dall’Osto
148 schema:givenName L.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360021350.97
150 rdf:type schema:Person
151 sg:person.0605371157.35 schema:affiliation grid-institutes:grid.5399.6
152 schema:familyName Bassi
153 schema:givenName R.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35
155 rdf:type schema:Person
156 grid-institutes:grid.5399.6 schema:alternateName Département de Biologie – Case 901, Faculté des Sciences de Luminy, Université Aix-Marseille II, LGBP, 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
157 schema:name Dipartimento Scientifico e Tecnologico, Università di Verona, Strada le Grazie 15, 37134, Verona, Italy
158 Département de Biologie – Case 901, Faculté des Sciences de Luminy, Université Aix-Marseille II, LGBP, 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
159 rdf:type schema:Organization
160 grid-institutes:grid.5611.3 schema:alternateName Dipartimento Scientifico e Tecnologico, Università di Verona, Strada le Grazie 15, 37134, Verona, Italy
161 schema:name Dipartimento Scientifico e Tecnologico, Università di Verona, Strada le Grazie 15, 37134, Verona, Italy
162 Laboratoire de Génétique et de Biophysique des Plantes, Faculté de Sciences de Luminy, Université de Marseille, Marseille Cedex 9, France
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...