Exploiting Photosynthesis for Biofuel Production View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

C. Govoni , T. Morosinotto , G. Giuliano , R. Bassi

ABSTRACT

During the recent “Energy Outlook and Modeling Conference” of March 2006 in Washington DC, it was estimated the world current energy consumption in 100 “Quads,” where one Quad corresponds to about 25 million of oil equivalent tons (MTep, http://www.eia.doe.gov/oiaf/aeo/conf/). Nowadays, over 85% of world energy demands are met by the combustion of fossil fuels: coal, oil, and natural gas. Current oil reserves are estimated to be about 1,277 billions of barrels and, assuming a stable consumption, they would be sufficient for next 42 years. However, in the middle-term oil utilization is expected to rise of 1.6% every year thus making reserves exhaustion even faster (http://www.eia.doe.gov/oiaf/aeo/conf/pdf/petak.pdf). It is thus clear that to sustain our lifestyle to find alternative and renewable sources of energy is a striking and urgent need.Besides the problem of fossil reserves depletion, the massive combustion of fossil fuels in the past decades also had a high environmental impact. In fact, this leads to releases of large amounts of carbon dioxide and other pollutants in the atmosphere. However, these emissions are reassimilated by natural processes, which cannot keep the pace of the present CO2 production rates. In fact, every year the forests are able to fix about 1 billion of tons of carbon in organic matter and further 2 billion of tons are fixed in the ocean every year by the sea photosynthesis, but the CO2 emissions caused by the human activity are about 6 billion of tons. So the balance is positive and every year 3 billion of tons increase the global level of CO2 in the atmosphere (Fig. 2.1). More... »

PAGES

15-28

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-76782-4_2

DOI

http://dx.doi.org/10.1007/978-3-540-76782-4_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050215176


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento Scientifico e Tecnologico, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5611.3", 
          "name": [
            "Dipartimento Scientifico e Tecnologico, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Govoni", 
        "givenName": "C.", 
        "id": "sg:person.010143175107.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010143175107.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Biologia, Universit\u00e0 di Padova, Via Ugo Bassi 58 B, 35131, Padova, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5608.b", 
          "name": [
            "Dipartimento di Biologia, Universit\u00e0 di Padova, Via Ugo Bassi 58 B, 35131, Padova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morosinotto", 
        "givenName": "T.", 
        "id": "sg:person.0657264117.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657264117.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ente per le Nuove tecnologie, l\u2019Energia e l\u2019Ambiente (ENEA), Unit\u00e0 Biotecnologie, Centro Ricerche Casaccia, C.P. 2400, 00100, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.5196.b", 
          "name": [
            "Ente per le Nuove tecnologie, l\u2019Energia e l\u2019Ambiente (ENEA), Unit\u00e0 Biotecnologie, Centro Ricerche Casaccia, C.P. 2400, 00100, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giuliano", 
        "givenName": "G.", 
        "id": "sg:person.01234626731.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234626731.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "D\u00e9partement de Biologie \u2013 Case 901, Facult\u00e9 des Sciences de Luminy, Universit\u00e9 Aix-Marseille II, LGBP, 163, Avenue de Luminy, 13288, Marseille Cedex 09, France", 
          "id": "http://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Dipartimento Scientifico e Tecnologico, Universit\u00e0 di Verona, Strada Le Grazie 15, 37134, Verona, Italy", 
            "D\u00e9partement de Biologie \u2013 Case 901, Facult\u00e9 des Sciences de Luminy, Universit\u00e9 Aix-Marseille II, LGBP, 163, Avenue de Luminy, 13288, Marseille Cedex 09, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bassi", 
        "givenName": "R.", 
        "id": "sg:person.0605371157.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "During the recent \u201cEnergy Outlook and Modeling Conference\u201d of March 2006 in Washington DC, it was estimated the world current energy consumption in 100 \u201cQuads,\u201d where one Quad corresponds to about 25 million of oil equivalent tons (MTep, http://www.eia.doe.gov/oiaf/aeo/conf/). Nowadays, over 85% of world energy demands are met by the combustion of fossil fuels: coal, oil, and natural gas. Current oil reserves are estimated to be about 1,277 billions of barrels and, assuming a stable consumption, they would be sufficient for next 42 years. However, in the middle-term oil utilization is expected to rise of 1.6% every year thus making reserves exhaustion even faster (http://www.eia.doe.gov/oiaf/aeo/conf/pdf/petak.pdf). It is thus clear that to sustain our lifestyle to find alternative and renewable sources of energy is a striking and urgent need.Besides the problem of fossil reserves depletion, the massive combustion of fossil fuels in the past decades also had a high environmental impact. In fact, this leads to releases of large amounts of carbon dioxide and other pollutants in the atmosphere. However, these emissions are reassimilated by natural processes, which cannot keep the pace of the present CO2 production rates. In fact, every year the forests are able to fix about 1 billion of tons of carbon in organic matter and further 2 billion of tons are fixed in the ocean every year by the sea photosynthesis, but the CO2 emissions caused by the human activity are about 6 billion of tons. So the balance is positive and every year 3 billion of tons increase the global level of CO2 in the atmosphere (Fig. 2.1).", 
    "editor": [
      {
        "familyName": "Pavesi", 
        "givenName": "Lorenzo", 
        "type": "Person"
      }, 
      {
        "familyName": "Fauchet", 
        "givenName": "Philippe M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-76782-4_2", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-76779-4", 
        "978-3-540-76782-4"
      ], 
      "name": "Biophotonics", 
      "type": "Book"
    }, 
    "keywords": [
      "fossil fuels", 
      "billions of barrels", 
      "world energy demand", 
      "current energy consumption", 
      "high environmental impact", 
      "natural gas", 
      "equivalent tons", 
      "renewable sources", 
      "energy demand", 
      "CO2 emissions", 
      "energy consumption", 
      "combustion", 
      "fuel", 
      "CO2 production rate", 
      "environmental impacts", 
      "oil reserves", 
      "carbon dioxide", 
      "tons", 
      "production rate", 
      "oil utilization", 
      "Energy Outlook", 
      "biofuel production", 
      "emission", 
      "coal", 
      "quad", 
      "atmosphere", 
      "gas", 
      "large amount", 
      "DC", 
      "reserve depletion", 
      "consumption", 
      "tons of carbon", 
      "dioxide", 
      "pollutants", 
      "CO2", 
      "oil", 
      "energy", 
      "barrel", 
      "organic matter", 
      "carbon", 
      "massive combustion", 
      "natural processes", 
      "process", 
      "demand", 
      "utilization", 
      "stable consumption", 
      "amount", 
      "source", 
      "problem", 
      "human activities", 
      "reserves", 
      "outlook", 
      "production", 
      "past decade", 
      "rate", 
      "balance", 
      "Ocean", 
      "billions", 
      "fact", 
      "impact", 
      "release", 
      "urgent need", 
      "matter", 
      "need", 
      "decades", 
      "Washington DC", 
      "depletion", 
      "global level", 
      "levels", 
      "pace", 
      "years", 
      "photosynthesis", 
      "forest", 
      "activity", 
      "conference", 
      "lifestyle"
    ], 
    "name": "Exploiting Photosynthesis for Biofuel Production", 
    "pagination": "15-28", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050215176"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-76782-4_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-76782-4_2", 
      "https://app.dimensions.ai/details/publication/pub.1050215176"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_83.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-76782-4_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-76782-4_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-76782-4_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-76782-4_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-76782-4_2'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      22 PREDICATES      101 URIs      94 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-76782-4_2 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N764215e8922144158283344d8830393c
4 schema:datePublished 2008
5 schema:datePublishedReg 2008-01-01
6 schema:description During the recent “Energy Outlook and Modeling Conference” of March 2006 in Washington DC, it was estimated the world current energy consumption in 100 “Quads,” where one Quad corresponds to about 25 million of oil equivalent tons (MTep, http://www.eia.doe.gov/oiaf/aeo/conf/). Nowadays, over 85% of world energy demands are met by the combustion of fossil fuels: coal, oil, and natural gas. Current oil reserves are estimated to be about 1,277 billions of barrels and, assuming a stable consumption, they would be sufficient for next 42 years. However, in the middle-term oil utilization is expected to rise of 1.6% every year thus making reserves exhaustion even faster (http://www.eia.doe.gov/oiaf/aeo/conf/pdf/petak.pdf). It is thus clear that to sustain our lifestyle to find alternative and renewable sources of energy is a striking and urgent need.Besides the problem of fossil reserves depletion, the massive combustion of fossil fuels in the past decades also had a high environmental impact. In fact, this leads to releases of large amounts of carbon dioxide and other pollutants in the atmosphere. However, these emissions are reassimilated by natural processes, which cannot keep the pace of the present CO2 production rates. In fact, every year the forests are able to fix about 1 billion of tons of carbon in organic matter and further 2 billion of tons are fixed in the ocean every year by the sea photosynthesis, but the CO2 emissions caused by the human activity are about 6 billion of tons. So the balance is positive and every year 3 billion of tons increase the global level of CO2 in the atmosphere (Fig. 2.1).
7 schema:editor N565022a0249b44d78b198acfb9c40b51
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N32090bcb81304cfcbc4185b7505b8f8a
11 schema:keywords CO2
12 CO2 emissions
13 CO2 production rate
14 DC
15 Energy Outlook
16 Ocean
17 Washington DC
18 activity
19 amount
20 atmosphere
21 balance
22 barrel
23 billions
24 billions of barrels
25 biofuel production
26 carbon
27 carbon dioxide
28 coal
29 combustion
30 conference
31 consumption
32 current energy consumption
33 decades
34 demand
35 depletion
36 dioxide
37 emission
38 energy
39 energy consumption
40 energy demand
41 environmental impacts
42 equivalent tons
43 fact
44 forest
45 fossil fuels
46 fuel
47 gas
48 global level
49 high environmental impact
50 human activities
51 impact
52 large amount
53 levels
54 lifestyle
55 massive combustion
56 matter
57 natural gas
58 natural processes
59 need
60 oil
61 oil reserves
62 oil utilization
63 organic matter
64 outlook
65 pace
66 past decade
67 photosynthesis
68 pollutants
69 problem
70 process
71 production
72 production rate
73 quad
74 rate
75 release
76 renewable sources
77 reserve depletion
78 reserves
79 source
80 stable consumption
81 tons
82 tons of carbon
83 urgent need
84 utilization
85 world energy demand
86 years
87 schema:name Exploiting Photosynthesis for Biofuel Production
88 schema:pagination 15-28
89 schema:productId Nb35e1d7edf174b4d8db9de9043b85768
90 Nd2b88d474135492abc20b10fcd4730d4
91 schema:publisher N7f0c34d5f8db4e2fb0a2d0ac4144771e
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050215176
93 https://doi.org/10.1007/978-3-540-76782-4_2
94 schema:sdDatePublished 2022-12-01T06:55
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher Nbbf7900775f54857bf11b170788991c5
97 schema:url https://doi.org/10.1007/978-3-540-76782-4_2
98 sgo:license sg:explorer/license/
99 sgo:sdDataset chapters
100 rdf:type schema:Chapter
101 N09e2cda6aafc4b339dd17851a594b53c rdf:first sg:person.01234626731.61
102 rdf:rest N7e314f47fbe247e3a72f98edec36f6d1
103 N32090bcb81304cfcbc4185b7505b8f8a schema:isbn 978-3-540-76779-4
104 978-3-540-76782-4
105 schema:name Biophotonics
106 rdf:type schema:Book
107 N45eda4b9b3ca40889c692005b38abfce schema:familyName Pavesi
108 schema:givenName Lorenzo
109 rdf:type schema:Person
110 N565022a0249b44d78b198acfb9c40b51 rdf:first N45eda4b9b3ca40889c692005b38abfce
111 rdf:rest Na26109e2ce704e509d3616b3e009b098
112 N764215e8922144158283344d8830393c rdf:first sg:person.010143175107.50
113 rdf:rest Nf76a7a34a62a41e18130f19247b229d5
114 N7e314f47fbe247e3a72f98edec36f6d1 rdf:first sg:person.0605371157.35
115 rdf:rest rdf:nil
116 N7f0c34d5f8db4e2fb0a2d0ac4144771e schema:name Springer Nature
117 rdf:type schema:Organisation
118 Na26109e2ce704e509d3616b3e009b098 rdf:first Nd10e358de84543d886484ae22b3f171c
119 rdf:rest rdf:nil
120 Nb35e1d7edf174b4d8db9de9043b85768 schema:name doi
121 schema:value 10.1007/978-3-540-76782-4_2
122 rdf:type schema:PropertyValue
123 Nbbf7900775f54857bf11b170788991c5 schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 Nd10e358de84543d886484ae22b3f171c schema:familyName Fauchet
126 schema:givenName Philippe M.
127 rdf:type schema:Person
128 Nd2b88d474135492abc20b10fcd4730d4 schema:name dimensions_id
129 schema:value pub.1050215176
130 rdf:type schema:PropertyValue
131 Nf76a7a34a62a41e18130f19247b229d5 rdf:first sg:person.0657264117.32
132 rdf:rest N09e2cda6aafc4b339dd17851a594b53c
133 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
134 schema:name Engineering
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
137 schema:name Interdisciplinary Engineering
138 rdf:type schema:DefinedTerm
139 sg:person.010143175107.50 schema:affiliation grid-institutes:grid.5611.3
140 schema:familyName Govoni
141 schema:givenName C.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010143175107.50
143 rdf:type schema:Person
144 sg:person.01234626731.61 schema:affiliation grid-institutes:grid.5196.b
145 schema:familyName Giuliano
146 schema:givenName G.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234626731.61
148 rdf:type schema:Person
149 sg:person.0605371157.35 schema:affiliation grid-institutes:grid.5399.6
150 schema:familyName Bassi
151 schema:givenName R.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605371157.35
153 rdf:type schema:Person
154 sg:person.0657264117.32 schema:affiliation grid-institutes:grid.5608.b
155 schema:familyName Morosinotto
156 schema:givenName T.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657264117.32
158 rdf:type schema:Person
159 grid-institutes:grid.5196.b schema:alternateName Ente per le Nuove tecnologie, l’Energia e l’Ambiente (ENEA), Unità Biotecnologie, Centro Ricerche Casaccia, C.P. 2400, 00100, Roma, Italy
160 schema:name Ente per le Nuove tecnologie, l’Energia e l’Ambiente (ENEA), Unità Biotecnologie, Centro Ricerche Casaccia, C.P. 2400, 00100, Roma, Italy
161 rdf:type schema:Organization
162 grid-institutes:grid.5399.6 schema:alternateName Département de Biologie – Case 901, Faculté des Sciences de Luminy, Université Aix-Marseille II, LGBP, 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
163 schema:name Dipartimento Scientifico e Tecnologico, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
164 Département de Biologie – Case 901, Faculté des Sciences de Luminy, Université Aix-Marseille II, LGBP, 163, Avenue de Luminy, 13288, Marseille Cedex 09, France
165 rdf:type schema:Organization
166 grid-institutes:grid.5608.b schema:alternateName Dipartimento di Biologia, Università di Padova, Via Ugo Bassi 58 B, 35131, Padova, Italy
167 schema:name Dipartimento di Biologia, Università di Padova, Via Ugo Bassi 58 B, 35131, Padova, Italy
168 rdf:type schema:Organization
169 grid-institutes:grid.5611.3 schema:alternateName Dipartimento Scientifico e Tecnologico, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
170 schema:name Dipartimento Scientifico e Tecnologico, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...