A Probabilistic Framework for Tracking Deformable Soft Tissue in Minimally Invasive Surgery View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007

AUTHORS

Peter Mountney , Benny Lo , Surapa Thiemjarus , Danail Stoyanov , Guang Zhong-Yang

ABSTRACT

The use of vision based algorithms in minimally invasive surgery has attracted significant attention in recent years due to its potential in providing in situ 3D tissue deformation recovery for intra-operative surgical guidance and robotic navigation. Thus far, a large number of feature descriptors have been proposed in computer vision but direct application of these techniques to minimally invasive surgery has shown significant problems due to free-form tissue deformation and varying visual appearances of surgical scenes. This paper evaluates the current state-of-the-art feature descriptors in computer vision and outlines their respective performance issues when used for deformation tracking. A novel probabilistic framework for selecting the most discriminative descriptors is presented and a Bayesian fusion method is used to boost the accuracy and temporal persistency of soft-tissue deformation tracking. The performance of the proposed method is evaluated with both simulated data with known ground truth, as well as in vivo video sequences recorded from robotic assisted MIS procedures. More... »

PAGES

34-41

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-75759-7_5

DOI

http://dx.doi.org/10.1007/978-3-540-75759-7_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053447896

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18044550


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Connective Tissue", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Minimally Invasive Surgical Procedures", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pattern Recognition, Automated", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Robotics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surgery, Computer-Assisted", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Computing,Imperial College, London SW7 2BZ, UK", 
            "Institute of Biomedical Engineering, Imperial College, London SW7 2BZ, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mountney", 
        "givenName": "Peter", 
        "id": "sg:person.0702376130.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702376130.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Computing,Imperial College, London SW7 2BZ, UK", 
            "Institute of Biomedical Engineering, Imperial College, London SW7 2BZ, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lo", 
        "givenName": "Benny", 
        "id": "sg:person.01137074651.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137074651.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Computing,Imperial College, London SW7 2BZ, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thiemjarus", 
        "givenName": "Surapa", 
        "id": "sg:person.011721520305.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011721520305.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Institute of Biomedical Engineering, Imperial College, London SW7 2BZ, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoyanov", 
        "givenName": "Danail", 
        "id": "sg:person.01131663065.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131663065.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Department of Computing,Imperial College, London SW7 2BZ, UK", 
            "Institute of Biomedical Engineering, Imperial College, London SW7 2BZ, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong-Yang", 
        "givenName": "Guang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/11744023_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000158525", 
          "https://doi.org/10.1007/11744023_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11566489_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018255633", 
          "https://doi.org/10.1007/11566489_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11566489_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018255633", 
          "https://doi.org/10.1007/11566489_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/1-84628-484-8_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018499624", 
          "https://doi.org/10.1007/1-84628-484-8_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/1-84628-484-8_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018499624", 
          "https://doi.org/10.1007/1-84628-484-8_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(97)00043-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031014012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(98)00036-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033201665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.391390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2006.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093543497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2006.312666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093630118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/robot.2004.1307163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094871734"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "The use of vision based algorithms in minimally invasive surgery has attracted significant attention in recent years due to its potential in providing in situ 3D tissue deformation recovery for intra-operative surgical guidance and robotic navigation. Thus far, a large number of feature descriptors have been proposed in computer vision but direct application of these techniques to minimally invasive surgery has shown significant problems due to free-form tissue deformation and varying visual appearances of surgical scenes. This paper evaluates the current state-of-the-art feature descriptors in computer vision and outlines their respective performance issues when used for deformation tracking. A novel probabilistic framework for selecting the most discriminative descriptors is presented and a Bayesian fusion method is used to boost the accuracy and temporal persistency of soft-tissue deformation tracking. The performance of the proposed method is evaluated with both simulated data with known ground truth, as well as in vivo video sequences recorded from robotic assisted MIS procedures.", 
    "editor": [
      {
        "familyName": "Ayache", 
        "givenName": "Nicholas", 
        "type": "Person"
      }, 
      {
        "familyName": "Ourselin", 
        "givenName": "S\u00e9bastien", 
        "type": "Person"
      }, 
      {
        "familyName": "Maeder", 
        "givenName": "Anthony", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-75759-7_5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2764568", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-3-540-75758-0"
      ], 
      "name": "Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2007", 
      "type": "Book"
    }, 
    "name": "A Probabilistic Framework for Tracking Deformable Soft Tissue in Minimally Invasive Surgery", 
    "pagination": "34-41", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-75759-7_5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fe9412190c0eb59f615d69c9aa43d8d43ef291a7b3a6fecab8534739eda59430"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053447896"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18044550"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-75759-7_5", 
      "https://app.dimensions.ai/details/publication/pub.1053447896"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99839_00000003.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-75759-7_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75759-7_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75759-7_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75759-7_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75759-7_5'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      23 PREDICATES      56 URIs      39 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-75759-7_5 schema:about N0e7658a331bd45a7b68542e302089309
2 N25e6cc659d104059815b5ddec13c41d9
3 N4269ef4a6bf44ec497b144bcb19a5859
4 N43aec60c8c664bffac73bf5e4b435834
5 N4ae2f7570b1944b7a36169ee20b3fab9
6 N553a75978b134312b2bcd4bea0d87dee
7 N5fa95c13c02243d9b01928a5a6372687
8 N649fda23a9bf43628758786037c13b10
9 N7360cd68faa843bda4e630de55150566
10 N74d96551a5184ea0841918c76e3a7186
11 N7c370eec64c848bf91898b73c718f689
12 N923b10e04f83432cafa16a64560b3023
13 Na56b4660423c47cfa31bdbecdba0ae3c
14 Nacd6be14a0854b04975e9a1955c9d832
15 Nb6b5d524c6b94aa3b5edd53d47c83e8c
16 Nbd4860c9bca24a35a5808923966c6197
17 Ne0f13789fbd144c4afc7e2d3444b3281
18 Nf798d104c9b34698bfeddfa7765d5702
19 anzsrc-for:08
20 anzsrc-for:0801
21 schema:author N7143ad0b6a6141fd90464d97b99e3a3c
22 schema:citation sg:pub.10.1007/1-84628-484-8_8
23 sg:pub.10.1007/11566489_18
24 sg:pub.10.1007/11744023_32
25 https://doi.org/10.1016/s0004-3702(97)00043-x
26 https://doi.org/10.1016/s0031-3203(98)00036-3
27 https://doi.org/10.1109/34.391390
28 https://doi.org/10.1109/cvpr.2006.95
29 https://doi.org/10.1109/icip.2006.312666
30 https://doi.org/10.1109/robot.2004.1307163
31 https://doi.org/10.1109/tpami.2005.188
32 schema:datePublished 2007
33 schema:datePublishedReg 2007-01-01
34 schema:description The use of vision based algorithms in minimally invasive surgery has attracted significant attention in recent years due to its potential in providing in situ 3D tissue deformation recovery for intra-operative surgical guidance and robotic navigation. Thus far, a large number of feature descriptors have been proposed in computer vision but direct application of these techniques to minimally invasive surgery has shown significant problems due to free-form tissue deformation and varying visual appearances of surgical scenes. This paper evaluates the current state-of-the-art feature descriptors in computer vision and outlines their respective performance issues when used for deformation tracking. A novel probabilistic framework for selecting the most discriminative descriptors is presented and a Bayesian fusion method is used to boost the accuracy and temporal persistency of soft-tissue deformation tracking. The performance of the proposed method is evaluated with both simulated data with known ground truth, as well as in vivo video sequences recorded from robotic assisted MIS procedures.
35 schema:editor N06b90d6327b64e09a659fc8e5e76c9fc
36 schema:genre chapter
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf Nafbcb178addb45bd84eb5372dbd7f35f
40 schema:name A Probabilistic Framework for Tracking Deformable Soft Tissue in Minimally Invasive Surgery
41 schema:pagination 34-41
42 schema:productId N3bff4d9b546540fcace461fec6bb74dc
43 N3d02f6bd85ad464d893a52489cee4ee9
44 N622b5e4faee84a228fb526af2ed360fa
45 Nfc0fd67e09d64482ab884072b6c6b67b
46 schema:publisher N1296c8729cf34e499e140027e53a4c60
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053447896
48 https://doi.org/10.1007/978-3-540-75759-7_5
49 schema:sdDatePublished 2019-04-16T05:38
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N6e009a0c2af24494902fe5164a2184cc
52 schema:url https://link.springer.com/10.1007%2F978-3-540-75759-7_5
53 sgo:license sg:explorer/license/
54 sgo:sdDataset chapters
55 rdf:type schema:Chapter
56 N06b90d6327b64e09a659fc8e5e76c9fc rdf:first Nebe84a1636ef44389d8594202562e5ea
57 rdf:rest N3f7c27e5f903436bb81be95dd5a63916
58 N0e7658a331bd45a7b68542e302089309 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Image Enhancement
60 rdf:type schema:DefinedTerm
61 N1296c8729cf34e499e140027e53a4c60 schema:location Berlin, Heidelberg
62 schema:name Springer Berlin Heidelberg
63 rdf:type schema:Organisation
64 N22b73e8b5f714cbcaeeb9c73abcb5da8 schema:familyName Ourselin
65 schema:givenName Sébastien
66 rdf:type schema:Person
67 N25e6cc659d104059815b5ddec13c41d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Movement
69 rdf:type schema:DefinedTerm
70 N3b78bb00d2d44c55b618a99bc3120e25 rdf:first Nc4b25e98083a4496b06fa67804096f10
71 rdf:rest rdf:nil
72 N3bff4d9b546540fcace461fec6bb74dc schema:name readcube_id
73 schema:value fe9412190c0eb59f615d69c9aa43d8d43ef291a7b3a6fecab8534739eda59430
74 rdf:type schema:PropertyValue
75 N3d02f6bd85ad464d893a52489cee4ee9 schema:name dimensions_id
76 schema:value pub.1053447896
77 rdf:type schema:PropertyValue
78 N3f7c27e5f903436bb81be95dd5a63916 rdf:first N22b73e8b5f714cbcaeeb9c73abcb5da8
79 rdf:rest N3b78bb00d2d44c55b618a99bc3120e25
80 N426845d217ff4e12b4b551cf2241dc05 rdf:first sg:person.011721520305.11
81 rdf:rest N6c538ce2242e45a4a88230c708c14a2a
82 N4269ef4a6bf44ec497b144bcb19a5859 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Algorithms
84 rdf:type schema:DefinedTerm
85 N43aec60c8c664bffac73bf5e4b435834 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Models, Biological
87 rdf:type schema:DefinedTerm
88 N4ae2f7570b1944b7a36169ee20b3fab9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Image Interpretation, Computer-Assisted
90 rdf:type schema:DefinedTerm
91 N553a75978b134312b2bcd4bea0d87dee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Humans
93 rdf:type schema:DefinedTerm
94 N5fa95c13c02243d9b01928a5a6372687 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Computer Simulation
96 rdf:type schema:DefinedTerm
97 N622b5e4faee84a228fb526af2ed360fa schema:name doi
98 schema:value 10.1007/978-3-540-75759-7_5
99 rdf:type schema:PropertyValue
100 N649fda23a9bf43628758786037c13b10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Imaging, Three-Dimensional
102 rdf:type schema:DefinedTerm
103 N6c538ce2242e45a4a88230c708c14a2a rdf:first sg:person.01131663065.63
104 rdf:rest Ne7b8f4efe75147f68d6955b62af43b3b
105 N6e009a0c2af24494902fe5164a2184cc schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N7143ad0b6a6141fd90464d97b99e3a3c rdf:first sg:person.0702376130.54
108 rdf:rest Nba54cbc3df5a40ae94059794918a48d8
109 N7360cd68faa843bda4e630de55150566 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Pattern Recognition, Automated
111 rdf:type schema:DefinedTerm
112 N74d96551a5184ea0841918c76e3a7186 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Models, Statistical
114 rdf:type schema:DefinedTerm
115 N7c370eec64c848bf91898b73c718f689 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Surgery, Computer-Assisted
117 rdf:type schema:DefinedTerm
118 N923b10e04f83432cafa16a64560b3023 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Minimally Invasive Surgical Procedures
120 rdf:type schema:DefinedTerm
121 Na56b4660423c47cfa31bdbecdba0ae3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Elasticity
123 rdf:type schema:DefinedTerm
124 Na8f7fe9a46c34c2e854fe896a3bd71d6 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
125 schema:familyName Zhong-Yang
126 schema:givenName Guang
127 rdf:type schema:Person
128 Nacd6be14a0854b04975e9a1955c9d832 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Artificial Intelligence
130 rdf:type schema:DefinedTerm
131 Nafbcb178addb45bd84eb5372dbd7f35f schema:isbn 978-3-540-75758-0
132 schema:name Medical Image Computing and Computer-Assisted Intervention – MICCAI 2007
133 rdf:type schema:Book
134 Nb6b5d524c6b94aa3b5edd53d47c83e8c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Connective Tissue
136 rdf:type schema:DefinedTerm
137 Nba54cbc3df5a40ae94059794918a48d8 rdf:first sg:person.01137074651.28
138 rdf:rest N426845d217ff4e12b4b551cf2241dc05
139 Nbd4860c9bca24a35a5808923966c6197 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Sensitivity and Specificity
141 rdf:type schema:DefinedTerm
142 Nc4b25e98083a4496b06fa67804096f10 schema:familyName Maeder
143 schema:givenName Anthony
144 rdf:type schema:Person
145 Ne0f13789fbd144c4afc7e2d3444b3281 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Reproducibility of Results
147 rdf:type schema:DefinedTerm
148 Ne7b8f4efe75147f68d6955b62af43b3b rdf:first Na8f7fe9a46c34c2e854fe896a3bd71d6
149 rdf:rest rdf:nil
150 Nebe84a1636ef44389d8594202562e5ea schema:familyName Ayache
151 schema:givenName Nicholas
152 rdf:type schema:Person
153 Nf798d104c9b34698bfeddfa7765d5702 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Robotics
155 rdf:type schema:DefinedTerm
156 Nfc0fd67e09d64482ab884072b6c6b67b schema:name pubmed_id
157 schema:value 18044550
158 rdf:type schema:PropertyValue
159 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
160 schema:name Information and Computing Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
163 schema:name Artificial Intelligence and Image Processing
164 rdf:type schema:DefinedTerm
165 sg:grant.2764568 http://pending.schema.org/fundedItem sg:pub.10.1007/978-3-540-75759-7_5
166 rdf:type schema:MonetaryGrant
167 sg:person.01131663065.63 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
168 schema:familyName Stoyanov
169 schema:givenName Danail
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131663065.63
171 rdf:type schema:Person
172 sg:person.01137074651.28 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
173 schema:familyName Lo
174 schema:givenName Benny
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137074651.28
176 rdf:type schema:Person
177 sg:person.011721520305.11 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
178 schema:familyName Thiemjarus
179 schema:givenName Surapa
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011721520305.11
181 rdf:type schema:Person
182 sg:person.0702376130.54 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
183 schema:familyName Mountney
184 schema:givenName Peter
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0702376130.54
186 rdf:type schema:Person
187 sg:pub.10.1007/1-84628-484-8_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018499624
188 https://doi.org/10.1007/1-84628-484-8_8
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/11566489_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018255633
191 https://doi.org/10.1007/11566489_18
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/11744023_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000158525
194 https://doi.org/10.1007/11744023_32
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/s0004-3702(97)00043-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031014012
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/s0031-3203(98)00036-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033201665
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1109/34.391390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156202
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1109/cvpr.2006.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093543497
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1109/icip.2006.312666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093630118
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1109/robot.2004.1307163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094871734
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/tpami.2005.188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742845
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
211 schema:name Department of Computing,Imperial College, London SW7 2BZ, UK
212 Institute of Biomedical Engineering, Imperial College, London SW7 2BZ, UK
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...