Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007

AUTHORS

Xiaoyang Tan , Bill Triggs

ABSTRACT

Recognition in uncontrolled situations is one of the most important bottlenecks for practical face recognition systems. We address this by combining the strengths of robust illumination normalization, local texture based face representations and distance transform based matching metrics. Specifically, we make three main contributions: (i) we present a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition; (ii) we introduce Local Ternary Patterns (LTP), a generalization of the Local Binary Pattern (LBP) local texture descriptor that is more discriminant and less sensitive to noise in uniform regions; and (iii) we show that replacing local histogramming with a local distance transform based similarity metric further improves the performance of LBP/LTP based face recognition. The resulting method gives state-of-the-art performance on three popular datasets chosen to test recognition under difficult illumination conditions: Face Recognition Grand Challenge version 1 experiment 4, Extended Yale-B, and CMU PIE. More... »

PAGES

168-182

References to SciGraph publications

  • 2004. Face Recognition with Local Binary Patterns in COMPUTER VISION - ECCV 2004
  • 2003-06-24. An Image Preprocessing Algorithm for Illumination Invariant Face Recognition in AUDIO- AND VIDEO-BASED BIOMETRIC PERSON AUTHENTICATION
  • 2006. Face Authentication Using Adapted Local Binary Pattern Histograms in COMPUTER VISION – ECCV 2006
  • 1998-07. What Is the Set of Images of an Object Under All Possible Illumination Conditions? in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Book

    TITLE

    Analysis and Modeling of Faces and Gestures

    ISBN

    978-3-540-75689-7

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-540-75690-3_13

    DOI

    http://dx.doi.org/10.1007/978-3-540-75690-3_13

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1005415020


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "INRIA & Laboratoire Jean Kuntzmann, 655 avenue de l\u2019Europe, Montbonnot 38330, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tan", 
            "givenName": "Xiaoyang", 
            "id": "sg:person.01156720011.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156720011.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "INRIA & Laboratoire Jean Kuntzmann, 655 avenue de l\u2019Europe, Montbonnot 38330, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Triggs", 
            "givenName": "Bill", 
            "id": "sg:person.012411634653.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411634653.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-24670-1_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006666962", 
              "https://doi.org/10.1007/978-3-540-24670-1_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24670-1_36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006666962", 
              "https://doi.org/10.1007/978-3-540-24670-1_36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11744085_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009186877", 
              "https://doi.org/10.1007/11744085_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11744085_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009186877", 
              "https://doi.org/10.1007/11744085_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44887-x_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013564500", 
              "https://doi.org/10.1007/3-540-44887-x_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-44887-x_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013564500", 
              "https://doi.org/10.1007/3-540-44887-x_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(90)90135-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022410728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(90)90135-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022410728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/954339.954342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024296753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(95)00067-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035783933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2003.1177153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038336442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0734-189x(86)80047-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039550237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008005721484", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051637698", 
              "https://doi.org/10.1023/a:1008005721484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.541411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.598228", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/83.597272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061239600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2002.1017623", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2005.92", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2006.195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2006.244", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2006.90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061743131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2005.147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093369149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2000.855827", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093896672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2001.990518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094322163"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/afgr.2004.1301540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094429008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/afgr.2004.1301635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094881015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2003.1211333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095390993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/fgr.2006.72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095432684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/afgr.2002.1004130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095653154"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007", 
        "datePublishedReg": "2007-01-01", 
        "description": "Recognition in uncontrolled situations is one of the most important bottlenecks for practical face recognition systems. We address this by combining the strengths of robust illumination normalization, local texture based face representations and distance transform based matching metrics. Specifically, we make three main contributions: (i) we present a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition; (ii) we introduce Local Ternary Patterns (LTP), a generalization of the Local Binary Pattern (LBP) local texture descriptor that is more discriminant and less sensitive to noise in uniform regions; and (iii) we show that replacing local histogramming with a local distance transform based similarity metric further improves the performance of LBP/LTP based face recognition. The resulting method gives state-of-the-art performance on three popular datasets chosen to test recognition under difficult illumination conditions: Face Recognition Grand Challenge version 1 experiment 4, Extended Yale-B, and CMU PIE.", 
        "editor": [
          {
            "familyName": "Zhou", 
            "givenName": "S. Kevin", 
            "type": "Person"
          }, 
          {
            "familyName": "Zhao", 
            "givenName": "Wenyi", 
            "type": "Person"
          }, 
          {
            "familyName": "Tang", 
            "givenName": "Xiaoou", 
            "type": "Person"
          }, 
          {
            "familyName": "Gong", 
            "givenName": "Shaogang", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-540-75690-3_13", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-540-75689-7"
          ], 
          "name": "Analysis and Modeling of Faces and Gestures", 
          "type": "Book"
        }, 
        "name": "Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions", 
        "pagination": "168-182", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-540-75690-3_13"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "19ccd6f8ae4fa79cafa9512b92b532d9e5dd7ae9a6c923d6fb0ae07d5ebe003b"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1005415020"
            ]
          }
        ], 
        "publisher": {
          "location": "Berlin, Heidelberg", 
          "name": "Springer Berlin Heidelberg", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-540-75690-3_13", 
          "https://app.dimensions.ai/details/publication/pub.1005415020"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T16:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000246.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-540-75690-3_13"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75690-3_13'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75690-3_13'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75690-3_13'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75690-3_13'


     

    This table displays all metadata directly associated to this object as RDF triples.

    166 TRIPLES      23 PREDICATES      52 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-540-75690-3_13 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N49a7253ff20b4a0392797d132785ba0a
    4 schema:citation sg:pub.10.1007/11744085_25
    5 sg:pub.10.1007/3-540-44887-x_2
    6 sg:pub.10.1007/978-3-540-24670-1_36
    7 sg:pub.10.1023/a:1008005721484
    8 https://doi.org/10.1016/0031-3203(90)90135-8
    9 https://doi.org/10.1016/0031-3203(95)00067-4
    10 https://doi.org/10.1016/s0734-189x(86)80047-0
    11 https://doi.org/10.1109/34.541411
    12 https://doi.org/10.1109/34.598228
    13 https://doi.org/10.1109/83.597272
    14 https://doi.org/10.1109/afgr.2002.1004130
    15 https://doi.org/10.1109/afgr.2004.1301540
    16 https://doi.org/10.1109/afgr.2004.1301635
    17 https://doi.org/10.1109/cvpr.2000.855827
    18 https://doi.org/10.1109/cvpr.2001.990518
    19 https://doi.org/10.1109/cvpr.2003.1211333
    20 https://doi.org/10.1109/fgr.2006.72
    21 https://doi.org/10.1109/iccv.2005.147
    22 https://doi.org/10.1109/tpami.2002.1017623
    23 https://doi.org/10.1109/tpami.2003.1177153
    24 https://doi.org/10.1109/tpami.2005.92
    25 https://doi.org/10.1109/tpami.2006.195
    26 https://doi.org/10.1109/tpami.2006.244
    27 https://doi.org/10.1109/tpami.2006.90
    28 https://doi.org/10.1145/954339.954342
    29 schema:datePublished 2007
    30 schema:datePublishedReg 2007-01-01
    31 schema:description Recognition in uncontrolled situations is one of the most important bottlenecks for practical face recognition systems. We address this by combining the strengths of robust illumination normalization, local texture based face representations and distance transform based matching metrics. Specifically, we make three main contributions: (i) we present a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition; (ii) we introduce Local Ternary Patterns (LTP), a generalization of the Local Binary Pattern (LBP) local texture descriptor that is more discriminant and less sensitive to noise in uniform regions; and (iii) we show that replacing local histogramming with a local distance transform based similarity metric further improves the performance of LBP/LTP based face recognition. The resulting method gives state-of-the-art performance on three popular datasets chosen to test recognition under difficult illumination conditions: Face Recognition Grand Challenge version 1 experiment 4, Extended Yale-B, and CMU PIE.
    32 schema:editor N0a98a054b68342c18fe74c08e00398a4
    33 schema:genre chapter
    34 schema:inLanguage en
    35 schema:isAccessibleForFree true
    36 schema:isPartOf N9bb65c5d49024776ad855ccd5da0e83f
    37 schema:name Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions
    38 schema:pagination 168-182
    39 schema:productId N62804ce57e4349268356545334d46419
    40 N8db8076eac4d4b469be8df71dc210197
    41 Ne329d1b66a514d4396f3659753a48681
    42 schema:publisher Ne410caa59e6d46d2bca0ddc508bfc123
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005415020
    44 https://doi.org/10.1007/978-3-540-75690-3_13
    45 schema:sdDatePublished 2019-04-15T16:14
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N111e70d393d8494e8c64213ffe608d4e
    48 schema:url http://link.springer.com/10.1007/978-3-540-75690-3_13
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset chapters
    51 rdf:type schema:Chapter
    52 N01d350539f5f465f95d60002c98e2c37 schema:familyName Zhou
    53 schema:givenName S. Kevin
    54 rdf:type schema:Person
    55 N0a98a054b68342c18fe74c08e00398a4 rdf:first N01d350539f5f465f95d60002c98e2c37
    56 rdf:rest Nb8341996ff774ae38579b219ac02c813
    57 N111e70d393d8494e8c64213ffe608d4e schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 N29e15e67f44f4608b355310b055fb07d rdf:first N37028e61ea6a4a1a803387a290b37385
    60 rdf:rest N5e7ebe84a7b2420db7d32efb23a13efe
    61 N37028e61ea6a4a1a803387a290b37385 schema:familyName Tang
    62 schema:givenName Xiaoou
    63 rdf:type schema:Person
    64 N3f35e0f95ea742069247072aad289ec7 schema:familyName Zhao
    65 schema:givenName Wenyi
    66 rdf:type schema:Person
    67 N49a7253ff20b4a0392797d132785ba0a rdf:first sg:person.01156720011.76
    68 rdf:rest Nc1c83ca467034b38ac172d65cc292a79
    69 N5135454d69de42bcb91c2440c56b34ec schema:name INRIA & Laboratoire Jean Kuntzmann, 655 avenue de l’Europe, Montbonnot 38330, France
    70 rdf:type schema:Organization
    71 N5e7ebe84a7b2420db7d32efb23a13efe rdf:first Nea4a1cfe5ff44140b939fa436e1a7924
    72 rdf:rest rdf:nil
    73 N62804ce57e4349268356545334d46419 schema:name doi
    74 schema:value 10.1007/978-3-540-75690-3_13
    75 rdf:type schema:PropertyValue
    76 N8db8076eac4d4b469be8df71dc210197 schema:name dimensions_id
    77 schema:value pub.1005415020
    78 rdf:type schema:PropertyValue
    79 N9bb65c5d49024776ad855ccd5da0e83f schema:isbn 978-3-540-75689-7
    80 schema:name Analysis and Modeling of Faces and Gestures
    81 rdf:type schema:Book
    82 Nb8341996ff774ae38579b219ac02c813 rdf:first N3f35e0f95ea742069247072aad289ec7
    83 rdf:rest N29e15e67f44f4608b355310b055fb07d
    84 Nc1c83ca467034b38ac172d65cc292a79 rdf:first sg:person.012411634653.33
    85 rdf:rest rdf:nil
    86 Ne0e29d6f2b5340aebc7e3df3c6462bee schema:name INRIA & Laboratoire Jean Kuntzmann, 655 avenue de l’Europe, Montbonnot 38330, France
    87 rdf:type schema:Organization
    88 Ne329d1b66a514d4396f3659753a48681 schema:name readcube_id
    89 schema:value 19ccd6f8ae4fa79cafa9512b92b532d9e5dd7ae9a6c923d6fb0ae07d5ebe003b
    90 rdf:type schema:PropertyValue
    91 Ne410caa59e6d46d2bca0ddc508bfc123 schema:location Berlin, Heidelberg
    92 schema:name Springer Berlin Heidelberg
    93 rdf:type schema:Organisation
    94 Nea4a1cfe5ff44140b939fa436e1a7924 schema:familyName Gong
    95 schema:givenName Shaogang
    96 rdf:type schema:Person
    97 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Information and Computing Sciences
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Artificial Intelligence and Image Processing
    102 rdf:type schema:DefinedTerm
    103 sg:person.01156720011.76 schema:affiliation N5135454d69de42bcb91c2440c56b34ec
    104 schema:familyName Tan
    105 schema:givenName Xiaoyang
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156720011.76
    107 rdf:type schema:Person
    108 sg:person.012411634653.33 schema:affiliation Ne0e29d6f2b5340aebc7e3df3c6462bee
    109 schema:familyName Triggs
    110 schema:givenName Bill
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411634653.33
    112 rdf:type schema:Person
    113 sg:pub.10.1007/11744085_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009186877
    114 https://doi.org/10.1007/11744085_25
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/3-540-44887-x_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013564500
    117 https://doi.org/10.1007/3-540-44887-x_2
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/978-3-540-24670-1_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006666962
    120 https://doi.org/10.1007/978-3-540-24670-1_36
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1023/a:1008005721484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051637698
    123 https://doi.org/10.1023/a:1008005721484
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/0031-3203(90)90135-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022410728
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/0031-3203(95)00067-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035783933
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/s0734-189x(86)80047-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039550237
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1109/34.541411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156462
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1109/34.598228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156617
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1109/83.597272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239600
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1109/afgr.2002.1004130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095653154
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/afgr.2004.1301540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094429008
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/afgr.2004.1301635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094881015
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/cvpr.2000.855827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093896672
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/cvpr.2001.990518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094322163
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/cvpr.2003.1211333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095390993
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/fgr.2006.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095432684
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1109/iccv.2005.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093369149
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1109/tpami.2002.1017623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742396
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1109/tpami.2003.1177153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038336442
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1109/tpami.2005.92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742947
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1109/tpami.2006.195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743032
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1109/tpami.2006.244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743071
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1109/tpami.2006.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743131
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1145/954339.954342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024296753
    166 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...