Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007

AUTHORS

Xiaoyang Tan , Bill Triggs

ABSTRACT

Recognition in uncontrolled situations is one of the most important bottlenecks for practical face recognition systems. We address this by combining the strengths of robust illumination normalization, local texture based face representations and distance transform based matching metrics. Specifically, we make three main contributions: (i) we present a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition; (ii) we introduce Local Ternary Patterns (LTP), a generalization of the Local Binary Pattern (LBP) local texture descriptor that is more discriminant and less sensitive to noise in uniform regions; and (iii) we show that replacing local histogramming with a local distance transform based similarity metric further improves the performance of LBP/LTP based face recognition. The resulting method gives state-of-the-art performance on three popular datasets chosen to test recognition under difficult illumination conditions: Face Recognition Grand Challenge version 1 experiment 4, Extended Yale-B, and CMU PIE. More... »

PAGES

168-182

References to SciGraph publications

Book

TITLE

Analysis and Modeling of Faces and Gestures

ISBN

978-3-540-75689-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-75690-3_13

DOI

http://dx.doi.org/10.1007/978-3-540-75690-3_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005415020


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "INRIA & Laboratoire Jean Kuntzmann, 655 avenue de l\u2019Europe, Montbonnot 38330, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tan", 
        "givenName": "Xiaoyang", 
        "id": "sg:person.01156720011.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156720011.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INRIA & Laboratoire Jean Kuntzmann, 655 avenue de l\u2019Europe, Montbonnot 38330, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Triggs", 
        "givenName": "Bill", 
        "id": "sg:person.012411634653.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411634653.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-24670-1_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006666962", 
          "https://doi.org/10.1007/978-3-540-24670-1_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24670-1_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006666962", 
          "https://doi.org/10.1007/978-3-540-24670-1_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11744085_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009186877", 
          "https://doi.org/10.1007/11744085_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11744085_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009186877", 
          "https://doi.org/10.1007/11744085_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44887-x_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013564500", 
          "https://doi.org/10.1007/3-540-44887-x_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44887-x_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013564500", 
          "https://doi.org/10.1007/3-540-44887-x_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(90)90135-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022410728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(90)90135-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022410728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/954339.954342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024296753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(95)00067-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035783933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2003.1177153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038336442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0734-189x(86)80047-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039550237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008005721484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051637698", 
          "https://doi.org/10.1023/a:1008005721484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.541411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.598228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.597272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061239600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2002.1017623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.92", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2006.195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2006.244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2006.90", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2005.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093369149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2000.855827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093896672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2001.990518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094322163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/afgr.2004.1301540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094429008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/afgr.2004.1301635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094881015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2003.1211333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095390993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/fgr.2006.72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095432684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/afgr.2002.1004130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095653154"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "Recognition in uncontrolled situations is one of the most important bottlenecks for practical face recognition systems. We address this by combining the strengths of robust illumination normalization, local texture based face representations and distance transform based matching metrics. Specifically, we make three main contributions: (i) we present a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition; (ii) we introduce Local Ternary Patterns (LTP), a generalization of the Local Binary Pattern (LBP) local texture descriptor that is more discriminant and less sensitive to noise in uniform regions; and (iii) we show that replacing local histogramming with a local distance transform based similarity metric further improves the performance of LBP/LTP based face recognition. The resulting method gives state-of-the-art performance on three popular datasets chosen to test recognition under difficult illumination conditions: Face Recognition Grand Challenge version 1 experiment 4, Extended Yale-B, and CMU PIE.", 
    "editor": [
      {
        "familyName": "Zhou", 
        "givenName": "S. Kevin", 
        "type": "Person"
      }, 
      {
        "familyName": "Zhao", 
        "givenName": "Wenyi", 
        "type": "Person"
      }, 
      {
        "familyName": "Tang", 
        "givenName": "Xiaoou", 
        "type": "Person"
      }, 
      {
        "familyName": "Gong", 
        "givenName": "Shaogang", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-75690-3_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-75689-7"
      ], 
      "name": "Analysis and Modeling of Faces and Gestures", 
      "type": "Book"
    }, 
    "name": "Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions", 
    "pagination": "168-182", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-75690-3_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "19ccd6f8ae4fa79cafa9512b92b532d9e5dd7ae9a6c923d6fb0ae07d5ebe003b"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005415020"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-75690-3_13", 
      "https://app.dimensions.ai/details/publication/pub.1005415020"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000246.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-540-75690-3_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75690-3_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75690-3_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75690-3_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75690-3_13'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      23 PREDICATES      52 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-75690-3_13 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb4985fc0673049c2b8991839ef801a67
4 schema:citation sg:pub.10.1007/11744085_25
5 sg:pub.10.1007/3-540-44887-x_2
6 sg:pub.10.1007/978-3-540-24670-1_36
7 sg:pub.10.1023/a:1008005721484
8 https://doi.org/10.1016/0031-3203(90)90135-8
9 https://doi.org/10.1016/0031-3203(95)00067-4
10 https://doi.org/10.1016/s0734-189x(86)80047-0
11 https://doi.org/10.1109/34.541411
12 https://doi.org/10.1109/34.598228
13 https://doi.org/10.1109/83.597272
14 https://doi.org/10.1109/afgr.2002.1004130
15 https://doi.org/10.1109/afgr.2004.1301540
16 https://doi.org/10.1109/afgr.2004.1301635
17 https://doi.org/10.1109/cvpr.2000.855827
18 https://doi.org/10.1109/cvpr.2001.990518
19 https://doi.org/10.1109/cvpr.2003.1211333
20 https://doi.org/10.1109/fgr.2006.72
21 https://doi.org/10.1109/iccv.2005.147
22 https://doi.org/10.1109/tpami.2002.1017623
23 https://doi.org/10.1109/tpami.2003.1177153
24 https://doi.org/10.1109/tpami.2005.92
25 https://doi.org/10.1109/tpami.2006.195
26 https://doi.org/10.1109/tpami.2006.244
27 https://doi.org/10.1109/tpami.2006.90
28 https://doi.org/10.1145/954339.954342
29 schema:datePublished 2007
30 schema:datePublishedReg 2007-01-01
31 schema:description Recognition in uncontrolled situations is one of the most important bottlenecks for practical face recognition systems. We address this by combining the strengths of robust illumination normalization, local texture based face representations and distance transform based matching metrics. Specifically, we make three main contributions: (i) we present a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition; (ii) we introduce Local Ternary Patterns (LTP), a generalization of the Local Binary Pattern (LBP) local texture descriptor that is more discriminant and less sensitive to noise in uniform regions; and (iii) we show that replacing local histogramming with a local distance transform based similarity metric further improves the performance of LBP/LTP based face recognition. The resulting method gives state-of-the-art performance on three popular datasets chosen to test recognition under difficult illumination conditions: Face Recognition Grand Challenge version 1 experiment 4, Extended Yale-B, and CMU PIE.
32 schema:editor N8da9b88e2f3343868ac20f199ec3e75a
33 schema:genre chapter
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N4b40c99987e64a5b9afa38c65dc7911c
37 schema:name Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions
38 schema:pagination 168-182
39 schema:productId N0e98e8d1774f44209cbd7219675e9cff
40 N1f8b6ccc6ba54d5a81484dd4118f8535
41 N6242dc07f0434085be5b3255c83e9186
42 schema:publisher Nb3a8401f900f4bfeadef69b2724d16c1
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005415020
44 https://doi.org/10.1007/978-3-540-75690-3_13
45 schema:sdDatePublished 2019-04-15T16:14
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Ned89dc398a914baa98e53f2b3513aa33
48 schema:url http://link.springer.com/10.1007/978-3-540-75690-3_13
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N0e98e8d1774f44209cbd7219675e9cff schema:name readcube_id
53 schema:value 19ccd6f8ae4fa79cafa9512b92b532d9e5dd7ae9a6c923d6fb0ae07d5ebe003b
54 rdf:type schema:PropertyValue
55 N1f8b6ccc6ba54d5a81484dd4118f8535 schema:name doi
56 schema:value 10.1007/978-3-540-75690-3_13
57 rdf:type schema:PropertyValue
58 N28f0a3c174804a22919047a0b4b47366 schema:name INRIA & Laboratoire Jean Kuntzmann, 655 avenue de l’Europe, Montbonnot 38330, France
59 rdf:type schema:Organization
60 N415a020cf8704d6b866168c125ed46da rdf:first Nbf03624520f64af3992bacde11496b83
61 rdf:rest rdf:nil
62 N4459ec68f7f8471a9be325af71c26d9f rdf:first Nc2c202817d0d4d1ea3cca321c0d21232
63 rdf:rest N9107eb456802482787c4cb15c91c3af0
64 N4b40c99987e64a5b9afa38c65dc7911c schema:isbn 978-3-540-75689-7
65 schema:name Analysis and Modeling of Faces and Gestures
66 rdf:type schema:Book
67 N54e52c2daf9a4569aecc3c218b9f14d8 rdf:first sg:person.012411634653.33
68 rdf:rest rdf:nil
69 N5519d04206104a16bdc34ef1f51013c3 schema:familyName Tang
70 schema:givenName Xiaoou
71 rdf:type schema:Person
72 N5c1a2f539c314ea7b444a17d0a81cd1f schema:familyName Zhou
73 schema:givenName S. Kevin
74 rdf:type schema:Person
75 N6242dc07f0434085be5b3255c83e9186 schema:name dimensions_id
76 schema:value pub.1005415020
77 rdf:type schema:PropertyValue
78 N8da9b88e2f3343868ac20f199ec3e75a rdf:first N5c1a2f539c314ea7b444a17d0a81cd1f
79 rdf:rest N4459ec68f7f8471a9be325af71c26d9f
80 N9107eb456802482787c4cb15c91c3af0 rdf:first N5519d04206104a16bdc34ef1f51013c3
81 rdf:rest N415a020cf8704d6b866168c125ed46da
82 Nb3a8401f900f4bfeadef69b2724d16c1 schema:location Berlin, Heidelberg
83 schema:name Springer Berlin Heidelberg
84 rdf:type schema:Organisation
85 Nb4985fc0673049c2b8991839ef801a67 rdf:first sg:person.01156720011.76
86 rdf:rest N54e52c2daf9a4569aecc3c218b9f14d8
87 Nbf03624520f64af3992bacde11496b83 schema:familyName Gong
88 schema:givenName Shaogang
89 rdf:type schema:Person
90 Nc2c202817d0d4d1ea3cca321c0d21232 schema:familyName Zhao
91 schema:givenName Wenyi
92 rdf:type schema:Person
93 Nd203009f409946bc9c7923f5b6d20427 schema:name INRIA & Laboratoire Jean Kuntzmann, 655 avenue de l’Europe, Montbonnot 38330, France
94 rdf:type schema:Organization
95 Ned89dc398a914baa98e53f2b3513aa33 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
98 schema:name Information and Computing Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
101 schema:name Artificial Intelligence and Image Processing
102 rdf:type schema:DefinedTerm
103 sg:person.01156720011.76 schema:affiliation Nd203009f409946bc9c7923f5b6d20427
104 schema:familyName Tan
105 schema:givenName Xiaoyang
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156720011.76
107 rdf:type schema:Person
108 sg:person.012411634653.33 schema:affiliation N28f0a3c174804a22919047a0b4b47366
109 schema:familyName Triggs
110 schema:givenName Bill
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411634653.33
112 rdf:type schema:Person
113 sg:pub.10.1007/11744085_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009186877
114 https://doi.org/10.1007/11744085_25
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/3-540-44887-x_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013564500
117 https://doi.org/10.1007/3-540-44887-x_2
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/978-3-540-24670-1_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006666962
120 https://doi.org/10.1007/978-3-540-24670-1_36
121 rdf:type schema:CreativeWork
122 sg:pub.10.1023/a:1008005721484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051637698
123 https://doi.org/10.1023/a:1008005721484
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0031-3203(90)90135-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022410728
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0031-3203(95)00067-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035783933
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0734-189x(86)80047-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039550237
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/34.541411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156462
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/34.598228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156617
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/83.597272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239600
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/afgr.2002.1004130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095653154
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/afgr.2004.1301540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094429008
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/afgr.2004.1301635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094881015
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/cvpr.2000.855827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093896672
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/cvpr.2001.990518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094322163
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/cvpr.2003.1211333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095390993
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/fgr.2006.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095432684
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/iccv.2005.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093369149
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tpami.2002.1017623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742396
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/tpami.2003.1177153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038336442
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/tpami.2005.92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742947
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/tpami.2006.195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743032
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/tpami.2006.244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743071
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/tpami.2006.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743131
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1145/954339.954342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024296753
166 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...