Time and Space Efficient Discovery of Maximal Geometric Graphs View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007

AUTHORS

Hiroki Arimura , Takeaki Uno , Shinichi Shimozono

ABSTRACT

A geometric graph is a labeled graph whose vertices are points in the 2D plane with an isomorphism invariant under geometric transformations such as translation, rotation, and scaling. While Kuramochi and Karypis (ICDM2002) extensively studied the frequent pattern mining problem for geometric subgraphs, the maximal graph mining has not been considered so far. In this paper, we study the maximal (or closed) graph mining problem for the general class of geometric graphs in the 2D plane by extending the framework of Kuramochi and Karypis. Combining techniques of canonical encoding and a depth-first search tree for the class of maximal patterns, we present a polynomial delay and polynomial space algorithm, MaxGeo, that enumerates all maximal subgraphs in a given input geometric graph without duplicates. This is the first result establishing the output-sensitive complexity of closed graph mining for geometric graphs. We also show that the frequent graph mining problem is also solvable in polynomial delay and polynomial time. More... »

PAGES

42-55

Book

TITLE

Discovery Science

ISBN

978-3-540-75487-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-75488-6_6

DOI

http://dx.doi.org/10.1007/978-3-540-75488-6_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001317711


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hokkaido University", 
          "id": "https://www.grid.ac/institutes/grid.39158.36", 
          "name": [
            "Hokkaido University, Kita 14-jo, Nishi 9-chome, Sapporo 060-0814, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arimura", 
        "givenName": "Hiroki", 
        "id": "sg:person.013325377075.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013325377075.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Informatics", 
          "id": "https://www.grid.ac/institutes/grid.250343.3", 
          "name": [
            "National Institute of Informatics, Tokyo 101\u20138430, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uno", 
        "givenName": "Takeaki", 
        "id": "sg:person.016517167551.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016517167551.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyushu Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.258806.1", 
          "name": [
            "Kyushu Institute of Technology, Kawazu 680-4, Iizuka 820-8502, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shimozono", 
        "givenName": "Shinichi", 
        "id": "sg:person.015565512245.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015565512245.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0020-0190(02)00240-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001519681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-0190(02)00240-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001519681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11536314_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003806620", 
          "https://doi.org/10.1007/11536314_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11536314_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003806620", 
          "https://doi.org/10.1007/11536314_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00009388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010917210", 
          "https://doi.org/10.1007/pl00009388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00009388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010917210", 
          "https://doi.org/10.1007/pl00009388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-218x(95)00026-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013152121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/775047.775058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013503742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/956750.956784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020461301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1021021236", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1098-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021021236", 
          "https://doi.org/10.1007/978-1-4612-1098-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1098-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021021236", 
          "https://doi.org/10.1007/978-1-4612-1098-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45372-5_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026984655", 
          "https://doi.org/10.1007/3-540-45372-5_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45372-5_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026984655", 
          "https://doi.org/10.1007/3-540-45372-5_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007610422992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028044412", 
          "https://doi.org/10.1023/a:1007610422992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1143844.1143964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028732912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30214-8_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032189170", 
          "https://doi.org/10.1007/978-3-540-30214-8_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-30214-8_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032189170", 
          "https://doi.org/10.1007/978-3-540-30214-8_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24775-3_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038916179", 
          "https://doi.org/10.1007/978-3-540-24775-3_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24775-3_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038916179", 
          "https://doi.org/10.1007/978-3-540-24775-3_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/956750.956787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040031905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1014052.1014091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041745949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/959242.959249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047866982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-49257-7_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048579740", 
          "https://doi.org/10.1007/3-540-49257-7_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-49257-7_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048579740", 
          "https://doi.org/10.1007/3-540-49257-7_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11602613_73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049227974", 
          "https://doi.org/10.1007/11602613_73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11602613_73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049227974", 
          "https://doi.org/10.1007/11602613_73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11602613_73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049227974", 
          "https://doi.org/10.1007/11602613_73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972726.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088799860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21236/ada438939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091605517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icde.2004.1319986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093587884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icdm.2004.10078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095760949"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "A geometric graph is a labeled graph whose vertices are points in the 2D plane with an isomorphism invariant under geometric transformations such as translation, rotation, and scaling. While Kuramochi and Karypis (ICDM2002) extensively studied the frequent pattern mining problem for geometric subgraphs, the maximal graph mining has not been considered so far. In this paper, we study the maximal (or closed) graph mining problem for the general class of geometric graphs in the 2D plane by extending the framework of Kuramochi and Karypis. Combining techniques of canonical encoding and a depth-first search tree for the class of maximal patterns, we present a polynomial delay and polynomial space algorithm, MaxGeo, that enumerates all maximal subgraphs in a given input geometric graph without duplicates. This is the first result establishing the output-sensitive complexity of closed graph mining for geometric graphs. We also show that the frequent graph mining problem is also solvable in polynomial delay and polynomial time.", 
    "editor": [
      {
        "familyName": "Corruble", 
        "givenName": "Vincent", 
        "type": "Person"
      }, 
      {
        "familyName": "Takeda", 
        "givenName": "Masayuki", 
        "type": "Person"
      }, 
      {
        "familyName": "Suzuki", 
        "givenName": "Einoshin", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-75488-6_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-75487-9"
      ], 
      "name": "Discovery Science", 
      "type": "Book"
    }, 
    "name": "Time and Space Efficient Discovery of Maximal Geometric Graphs", 
    "pagination": "42-55", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-75488-6_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0646cc93d0d3059ce1b0b8edb800a6b9bb34978501cd4f8560a0f7925d5d5b83"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001317711"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-75488-6_6", 
      "https://app.dimensions.ai/details/publication/pub.1001317711"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99821_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-75488-6_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75488-6_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75488-6_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75488-6_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75488-6_6'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      23 PREDICATES      49 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-75488-6_6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nac20a6a8d3f0433fafacd89e2063e368
4 schema:citation sg:pub.10.1007/11536314_1
5 sg:pub.10.1007/11602613_73
6 sg:pub.10.1007/3-540-45372-5_2
7 sg:pub.10.1007/3-540-49257-7_25
8 sg:pub.10.1007/978-1-4612-1098-6
9 sg:pub.10.1007/978-3-540-24775-3_9
10 sg:pub.10.1007/978-3-540-30214-8_2
11 sg:pub.10.1007/pl00009388
12 sg:pub.10.1023/a:1007610422992
13 https://app.dimensions.ai/details/publication/pub.1021021236
14 https://doi.org/10.1016/0166-218x(95)00026-n
15 https://doi.org/10.1016/s0020-0190(02)00240-5
16 https://doi.org/10.1109/icde.2004.1319986
17 https://doi.org/10.1109/icdm.2004.10078
18 https://doi.org/10.1137/1.9781611972726.10
19 https://doi.org/10.1145/1014052.1014091
20 https://doi.org/10.1145/1143844.1143964
21 https://doi.org/10.1145/775047.775058
22 https://doi.org/10.1145/956750.956784
23 https://doi.org/10.1145/956750.956787
24 https://doi.org/10.1145/959242.959249
25 https://doi.org/10.21236/ada438939
26 schema:datePublished 2007
27 schema:datePublishedReg 2007-01-01
28 schema:description A geometric graph is a labeled graph whose vertices are points in the 2D plane with an isomorphism invariant under geometric transformations such as translation, rotation, and scaling. While Kuramochi and Karypis (ICDM2002) extensively studied the frequent pattern mining problem for geometric subgraphs, the maximal graph mining has not been considered so far. In this paper, we study the maximal (or closed) graph mining problem for the general class of geometric graphs in the 2D plane by extending the framework of Kuramochi and Karypis. Combining techniques of canonical encoding and a depth-first search tree for the class of maximal patterns, we present a polynomial delay and polynomial space algorithm, MaxGeo, that enumerates all maximal subgraphs in a given input geometric graph without duplicates. This is the first result establishing the output-sensitive complexity of closed graph mining for geometric graphs. We also show that the frequent graph mining problem is also solvable in polynomial delay and polynomial time.
29 schema:editor Nb4222e5d10d74049972339935cc73bae
30 schema:genre chapter
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N0036085b8c47443f988a5759b937e7cb
34 schema:name Time and Space Efficient Discovery of Maximal Geometric Graphs
35 schema:pagination 42-55
36 schema:productId N4e93b31f2ef842b484ecc6b63f2d6823
37 N941ae4944e374798ba8ca3381d589175
38 Nebc3e20cc8274c31a661417889156cd2
39 schema:publisher N7dfc2f089df84d6380c6a911ab5f55a6
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001317711
41 https://doi.org/10.1007/978-3-540-75488-6_6
42 schema:sdDatePublished 2019-04-16T05:33
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Neb7d63a4eb7f458c83cfbc0b2b1cea74
45 schema:url https://link.springer.com/10.1007%2F978-3-540-75488-6_6
46 sgo:license sg:explorer/license/
47 sgo:sdDataset chapters
48 rdf:type schema:Chapter
49 N0036085b8c47443f988a5759b937e7cb schema:isbn 978-3-540-75487-9
50 schema:name Discovery Science
51 rdf:type schema:Book
52 N4e93b31f2ef842b484ecc6b63f2d6823 schema:name doi
53 schema:value 10.1007/978-3-540-75488-6_6
54 rdf:type schema:PropertyValue
55 N6f99376baa0b493c9b8738bfb14949c9 schema:familyName Corruble
56 schema:givenName Vincent
57 rdf:type schema:Person
58 N7dfc2f089df84d6380c6a911ab5f55a6 schema:location Berlin, Heidelberg
59 schema:name Springer Berlin Heidelberg
60 rdf:type schema:Organisation
61 N941ae4944e374798ba8ca3381d589175 schema:name readcube_id
62 schema:value 0646cc93d0d3059ce1b0b8edb800a6b9bb34978501cd4f8560a0f7925d5d5b83
63 rdf:type schema:PropertyValue
64 Na3c0de263e894337ade509806eea48e5 rdf:first sg:person.016517167551.57
65 rdf:rest Nd66b8496446842dc8993b624967e5187
66 Nac20a6a8d3f0433fafacd89e2063e368 rdf:first sg:person.013325377075.00
67 rdf:rest Na3c0de263e894337ade509806eea48e5
68 Nad0ee8a11bcf4f64bde67e90fa332017 schema:familyName Takeda
69 schema:givenName Masayuki
70 rdf:type schema:Person
71 Nb4222e5d10d74049972339935cc73bae rdf:first N6f99376baa0b493c9b8738bfb14949c9
72 rdf:rest Ne60566d3c8374caeba556d316516040d
73 Nd66b8496446842dc8993b624967e5187 rdf:first sg:person.015565512245.50
74 rdf:rest rdf:nil
75 Ne26384fe75a1466c90bf2159eadfbaa9 schema:familyName Suzuki
76 schema:givenName Einoshin
77 rdf:type schema:Person
78 Ne60566d3c8374caeba556d316516040d rdf:first Nad0ee8a11bcf4f64bde67e90fa332017
79 rdf:rest Nf7e3a542a0e347c38d72f6f807fcd352
80 Neb7d63a4eb7f458c83cfbc0b2b1cea74 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Nebc3e20cc8274c31a661417889156cd2 schema:name dimensions_id
83 schema:value pub.1001317711
84 rdf:type schema:PropertyValue
85 Nf7e3a542a0e347c38d72f6f807fcd352 rdf:first Ne26384fe75a1466c90bf2159eadfbaa9
86 rdf:rest rdf:nil
87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
88 schema:name Mathematical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
91 schema:name Pure Mathematics
92 rdf:type schema:DefinedTerm
93 sg:person.013325377075.00 schema:affiliation https://www.grid.ac/institutes/grid.39158.36
94 schema:familyName Arimura
95 schema:givenName Hiroki
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013325377075.00
97 rdf:type schema:Person
98 sg:person.015565512245.50 schema:affiliation https://www.grid.ac/institutes/grid.258806.1
99 schema:familyName Shimozono
100 schema:givenName Shinichi
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015565512245.50
102 rdf:type schema:Person
103 sg:person.016517167551.57 schema:affiliation https://www.grid.ac/institutes/grid.250343.3
104 schema:familyName Uno
105 schema:givenName Takeaki
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016517167551.57
107 rdf:type schema:Person
108 sg:pub.10.1007/11536314_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003806620
109 https://doi.org/10.1007/11536314_1
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/11602613_73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049227974
112 https://doi.org/10.1007/11602613_73
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/3-540-45372-5_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026984655
115 https://doi.org/10.1007/3-540-45372-5_2
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/3-540-49257-7_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048579740
118 https://doi.org/10.1007/3-540-49257-7_25
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-1-4612-1098-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021021236
121 https://doi.org/10.1007/978-1-4612-1098-6
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/978-3-540-24775-3_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038916179
124 https://doi.org/10.1007/978-3-540-24775-3_9
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/978-3-540-30214-8_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032189170
127 https://doi.org/10.1007/978-3-540-30214-8_2
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/pl00009388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010917210
130 https://doi.org/10.1007/pl00009388
131 rdf:type schema:CreativeWork
132 sg:pub.10.1023/a:1007610422992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028044412
133 https://doi.org/10.1023/a:1007610422992
134 rdf:type schema:CreativeWork
135 https://app.dimensions.ai/details/publication/pub.1021021236 schema:CreativeWork
136 https://doi.org/10.1016/0166-218x(95)00026-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1013152121
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0020-0190(02)00240-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001519681
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/icde.2004.1319986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093587884
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/icdm.2004.10078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095760949
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1137/1.9781611972726.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088799860
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/1014052.1014091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041745949
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1145/1143844.1143964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028732912
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1145/775047.775058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013503742
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1145/956750.956784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020461301
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1145/956750.956787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040031905
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1145/959242.959249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047866982
157 rdf:type schema:CreativeWork
158 https://doi.org/10.21236/ada438939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091605517
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.250343.3 schema:alternateName National Institute of Informatics
161 schema:name National Institute of Informatics, Tokyo 101–8430, Japan
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.258806.1 schema:alternateName Kyushu Institute of Technology
164 schema:name Kyushu Institute of Technology, Kawazu 680-4, Iizuka 820-8502, Japan
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.39158.36 schema:alternateName Hokkaido University
167 schema:name Hokkaido University, Kita 14-jo, Nishi 9-chome, Sapporo 060-0814, Japan
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...