Multidrug Tolerance of Biofilms and Persister Cells View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2008

AUTHORS

K. Lewis

ABSTRACT

Bacterial populations produce a small number of dormant persister cells that exhibit multidrug tolerance. All resistance mechanisms do essentially the same thing: prevent the antibiotic from hitting a target. By contrast, tolerance apparently works by shutting down the targets. Bactericidal antibiotics kill bacteria by corrupting their targets, rather than merely inhibiting them. Shutting down the targets then protects from killing. The number of persisters in a growing population of bacteria rises at mid-log and reaches a maximum of approximately 1% at stationary state. Similarly, slow-growing biofilms produce substantial numbers of persisters. The ability of a biofilm to limit the access of the immune system components, and the ability of persisters to sustain an antibiotic attack could then account for the recalcitrance of such infections in vivo and for their relapsing nature. Isolation of Escherichia coli persisters by lysing a population or by sorting GFP-expressing cells with diminished translation allowed to obtain a gene expression profile. The profile indicated downregulated biosynthetic pathways, consistent with their dormant nature, and indicated overexpression of toxin/antitoxin (TA) modules. Stochastic overexpression of toxins that inhibit essential functions such as translation may contribute to persister formation. Ectopic expression of RelE, MazF, and HipA toxins produced multidrug tolerant cells. Apart from TA modules, glpD and plsB were identified as potential persister genes by overexpression cloning of a genomic library and selection for antibiotic tolerance. Yeast Candida albicans forms recalcitrant biofilm infections that are tolerant to antibiotics, similarly to bacterial biofilms. C. albicans biofilms produce multidrug tolerant persisters that are not mutants, but rather phenotypic variants of the wild type. Unlike bacterial persisters, however, C. albicans persisters were only observed in a biofilm, but not in a planktonic stationary population. Identification of persister genes opens the way to a rational design of anti-biofilm therapy. Combination of a conventional antibiotic with a compound inhibiting persister formation or maintenance may produce an effective therapeutic. Other approaches to the problem include sterile-surface materials, prodrug antibiotics, and cyclical application of conventional antimicrobials. More... »

PAGES

107-131

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-75418-3_6

DOI

http://dx.doi.org/10.1007/978-3-540-75418-3_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047337753

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18453274


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anti-Bacterial Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Infections", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Physiological Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biofilms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Resistance, Multiple, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biology, Northeastern University, 02459, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.261112.7", 
          "name": [
            "Department of Biology, Northeastern University, 02459, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lewis", 
        "givenName": "K.", 
        "id": "sg:person.0633104206.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633104206.69"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008", 
    "datePublishedReg": "2008-01-01", 
    "description": "Bacterial populations produce a small number of dormant persister cells that exhibit multidrug tolerance. All resistance mechanisms do essentially the same thing: prevent the antibiotic from hitting a target. By contrast, tolerance apparently works by shutting down the targets. Bactericidal antibiotics kill bacteria by corrupting their targets, rather than merely inhibiting them. Shutting down the targets then protects from killing. The number of persisters in a growing population of bacteria rises at mid-log and reaches a maximum of approximately 1% at stationary state. Similarly, slow-growing biofilms produce substantial numbers of persisters. The ability of a biofilm to limit the access of the immune system components, and the ability of persisters to sustain an antibiotic attack could then account for the recalcitrance of such infections in vivo and for their relapsing nature. Isolation of Escherichia coli persisters by lysing a population or by sorting GFP-expressing cells with diminished translation allowed to obtain a gene expression profile. The profile indicated downregulated biosynthetic pathways, consistent with their dormant nature, and indicated overexpression of toxin/antitoxin (TA) modules. Stochastic overexpression of toxins that inhibit essential functions such as translation may contribute to persister formation. Ectopic expression of RelE, MazF, and HipA toxins produced multidrug tolerant cells. Apart from TA modules, glpD and plsB were identified as potential persister genes by overexpression cloning of a genomic library and selection for antibiotic tolerance. Yeast Candida albicans forms recalcitrant biofilm infections that are tolerant to antibiotics, similarly to bacterial biofilms. C. albicans biofilms produce multidrug tolerant persisters that are not mutants, but rather phenotypic variants of the wild type. Unlike bacterial persisters, however, C. albicans persisters were only observed in a biofilm, but not in a planktonic stationary population. Identification of persister genes opens the way to a rational design of anti-biofilm therapy. Combination of a conventional antibiotic with a compound inhibiting persister formation or maintenance may produce an effective therapeutic. Other approaches to the problem include sterile-surface materials, prodrug antibiotics, and cyclical application of conventional antimicrobials.", 
    "editor": [
      {
        "familyName": "Romeo", 
        "givenName": "Tony", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-75418-3_6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-75417-6", 
        "978-3-540-75418-3"
      ], 
      "name": "Bacterial Biofilms", 
      "type": "Book"
    }, 
    "keywords": [
      "persister genes", 
      "multidrug tolerance", 
      "persister formation", 
      "persister cells", 
      "Escherichia coli persisters", 
      "toxin/antitoxin modules", 
      "multidrug-tolerant cells", 
      "multidrug-tolerant persisters", 
      "gene expression profiles", 
      "populations of bacteria", 
      "number of persisters", 
      "coli persisters", 
      "dormant persister cells", 
      "albicans forms", 
      "genomic library", 
      "HipA toxin", 
      "biosynthetic pathway", 
      "antitoxin modules", 
      "ectopic expression", 
      "TA modules", 
      "essential functions", 
      "wild type", 
      "expression profiles", 
      "antibiotic tolerance", 
      "anti-biofilm therapies", 
      "bacterial populations", 
      "antibiotic attack", 
      "bacterial persisters", 
      "tolerant persisters", 
      "phenotypic variants", 
      "prodrug antibiotics", 
      "tolerant cells", 
      "bacterial biofilms", 
      "resistance mechanisms", 
      "albicans biofilms", 
      "biofilms", 
      "genes", 
      "persisters", 
      "bactericidal antibiotics", 
      "biofilm infections", 
      "overexpression", 
      "dormant nature", 
      "bacteria", 
      "cells", 
      "immune system components", 
      "conventional antibiotics", 
      "tolerance", 
      "cyclical application", 
      "effective therapeutics", 
      "stationary population", 
      "target", 
      "glpD", 
      "plsB", 
      "MazF", 
      "mutants", 
      "toxin", 
      "cloning", 
      "rational design", 
      "GFP", 
      "translation", 
      "population", 
      "RelE", 
      "pathway", 
      "conventional antimicrobials", 
      "recalcitrance", 
      "expression", 
      "vivo", 
      "therapeutics", 
      "isolation", 
      "formation", 
      "variants", 
      "antibiotics", 
      "ability", 
      "maintenance", 
      "small number", 
      "library", 
      "identification", 
      "mechanism", 
      "substantial number", 
      "selection", 
      "number", 
      "infection", 
      "profile", 
      "function", 
      "contrast", 
      "antimicrobials", 
      "components", 
      "compounds", 
      "module", 
      "nature", 
      "form", 
      "types", 
      "such infections", 
      "combination", 
      "approach", 
      "maximum", 
      "state", 
      "system components", 
      "attacks", 
      "way", 
      "applications", 
      "therapy", 
      "stationary state", 
      "access", 
      "materials", 
      "design", 
      "same thing", 
      "problem", 
      "things"
    ], 
    "name": "Multidrug Tolerance of Biofilms and Persister Cells", 
    "pagination": "107-131", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047337753"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-75418-3_6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18453274"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-75418-3_6", 
      "https://app.dimensions.ai/details/publication/pub.1047337753"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_117.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-540-75418-3_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75418-3_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75418-3_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75418-3_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75418-3_6'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      23 PREDICATES      142 URIs      135 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-75418-3_6 schema:about N28a8081e7224456daa23d9baf9a7ef0e
2 N361a2d542697440c9fa5d266479a1096
3 N4d52b186229d40ab822db30eb1d45bee
4 N80485a27d1bc4de88fe47ed7d494f783
5 Nc97463cb55164f8a885af1988be56c33
6 Nf0ea5366dcc54f14b74c7ec6a5e64f87
7 anzsrc-for:06
8 anzsrc-for:0605
9 schema:author N83e736d5d15448bfb2a059639f16856c
10 schema:datePublished 2008
11 schema:datePublishedReg 2008-01-01
12 schema:description Bacterial populations produce a small number of dormant persister cells that exhibit multidrug tolerance. All resistance mechanisms do essentially the same thing: prevent the antibiotic from hitting a target. By contrast, tolerance apparently works by shutting down the targets. Bactericidal antibiotics kill bacteria by corrupting their targets, rather than merely inhibiting them. Shutting down the targets then protects from killing. The number of persisters in a growing population of bacteria rises at mid-log and reaches a maximum of approximately 1% at stationary state. Similarly, slow-growing biofilms produce substantial numbers of persisters. The ability of a biofilm to limit the access of the immune system components, and the ability of persisters to sustain an antibiotic attack could then account for the recalcitrance of such infections in vivo and for their relapsing nature. Isolation of Escherichia coli persisters by lysing a population or by sorting GFP-expressing cells with diminished translation allowed to obtain a gene expression profile. The profile indicated downregulated biosynthetic pathways, consistent with their dormant nature, and indicated overexpression of toxin/antitoxin (TA) modules. Stochastic overexpression of toxins that inhibit essential functions such as translation may contribute to persister formation. Ectopic expression of RelE, MazF, and HipA toxins produced multidrug tolerant cells. Apart from TA modules, glpD and plsB were identified as potential persister genes by overexpression cloning of a genomic library and selection for antibiotic tolerance. Yeast Candida albicans forms recalcitrant biofilm infections that are tolerant to antibiotics, similarly to bacterial biofilms. C. albicans biofilms produce multidrug tolerant persisters that are not mutants, but rather phenotypic variants of the wild type. Unlike bacterial persisters, however, C. albicans persisters were only observed in a biofilm, but not in a planktonic stationary population. Identification of persister genes opens the way to a rational design of anti-biofilm therapy. Combination of a conventional antibiotic with a compound inhibiting persister formation or maintenance may produce an effective therapeutic. Other approaches to the problem include sterile-surface materials, prodrug antibiotics, and cyclical application of conventional antimicrobials.
13 schema:editor Nb9c5b8f1f3144eea9b122ff0effae88d
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Neea1e04ef0534336a48b069ed121ffb9
18 schema:keywords Escherichia coli persisters
19 GFP
20 HipA toxin
21 MazF
22 RelE
23 TA modules
24 ability
25 access
26 albicans biofilms
27 albicans forms
28 anti-biofilm therapies
29 antibiotic attack
30 antibiotic tolerance
31 antibiotics
32 antimicrobials
33 antitoxin modules
34 applications
35 approach
36 attacks
37 bacteria
38 bacterial biofilms
39 bacterial persisters
40 bacterial populations
41 bactericidal antibiotics
42 biofilm infections
43 biofilms
44 biosynthetic pathway
45 cells
46 cloning
47 coli persisters
48 combination
49 components
50 compounds
51 contrast
52 conventional antibiotics
53 conventional antimicrobials
54 cyclical application
55 design
56 dormant nature
57 dormant persister cells
58 ectopic expression
59 effective therapeutics
60 essential functions
61 expression
62 expression profiles
63 form
64 formation
65 function
66 gene expression profiles
67 genes
68 genomic library
69 glpD
70 identification
71 immune system components
72 infection
73 isolation
74 library
75 maintenance
76 materials
77 maximum
78 mechanism
79 module
80 multidrug tolerance
81 multidrug-tolerant cells
82 multidrug-tolerant persisters
83 mutants
84 nature
85 number
86 number of persisters
87 overexpression
88 pathway
89 persister cells
90 persister formation
91 persister genes
92 persisters
93 phenotypic variants
94 plsB
95 population
96 populations of bacteria
97 problem
98 prodrug antibiotics
99 profile
100 rational design
101 recalcitrance
102 resistance mechanisms
103 same thing
104 selection
105 small number
106 state
107 stationary population
108 stationary state
109 substantial number
110 such infections
111 system components
112 target
113 therapeutics
114 therapy
115 things
116 tolerance
117 tolerant cells
118 tolerant persisters
119 toxin
120 toxin/antitoxin modules
121 translation
122 types
123 variants
124 vivo
125 way
126 wild type
127 schema:name Multidrug Tolerance of Biofilms and Persister Cells
128 schema:pagination 107-131
129 schema:productId N1fcc86b8d7e44ba9b11e04da8c711479
130 N39fe8f284bcb4bac9f066f5efcb0238e
131 Nac675198cce747319d966a786a59679b
132 schema:publisher Na2d20be7e1be412581166b4068b2170b
133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047337753
134 https://doi.org/10.1007/978-3-540-75418-3_6
135 schema:sdDatePublished 2022-06-01T22:27
136 schema:sdLicense https://scigraph.springernature.com/explorer/license/
137 schema:sdPublisher Nfead166e2547495680db418f9a0206dd
138 schema:url https://doi.org/10.1007/978-3-540-75418-3_6
139 sgo:license sg:explorer/license/
140 sgo:sdDataset chapters
141 rdf:type schema:Chapter
142 N1fcc86b8d7e44ba9b11e04da8c711479 schema:name doi
143 schema:value 10.1007/978-3-540-75418-3_6
144 rdf:type schema:PropertyValue
145 N28a8081e7224456daa23d9baf9a7ef0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Biofilms
147 rdf:type schema:DefinedTerm
148 N361a2d542697440c9fa5d266479a1096 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Bacterial Physiological Phenomena
150 rdf:type schema:DefinedTerm
151 N39fe8f284bcb4bac9f066f5efcb0238e schema:name dimensions_id
152 schema:value pub.1047337753
153 rdf:type schema:PropertyValue
154 N4d52b186229d40ab822db30eb1d45bee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Drug Resistance, Multiple, Bacterial
156 rdf:type schema:DefinedTerm
157 N80485a27d1bc4de88fe47ed7d494f783 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Humans
159 rdf:type schema:DefinedTerm
160 N83e736d5d15448bfb2a059639f16856c rdf:first sg:person.0633104206.69
161 rdf:rest rdf:nil
162 N94b795fdf03c4f6f8166102f8f6bfee6 schema:familyName Romeo
163 schema:givenName Tony
164 rdf:type schema:Person
165 Na2d20be7e1be412581166b4068b2170b schema:name Springer Nature
166 rdf:type schema:Organisation
167 Nac675198cce747319d966a786a59679b schema:name pubmed_id
168 schema:value 18453274
169 rdf:type schema:PropertyValue
170 Nb9c5b8f1f3144eea9b122ff0effae88d rdf:first N94b795fdf03c4f6f8166102f8f6bfee6
171 rdf:rest rdf:nil
172 Nc97463cb55164f8a885af1988be56c33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Anti-Bacterial Agents
174 rdf:type schema:DefinedTerm
175 Neea1e04ef0534336a48b069ed121ffb9 schema:isbn 978-3-540-75417-6
176 978-3-540-75418-3
177 schema:name Bacterial Biofilms
178 rdf:type schema:Book
179 Nf0ea5366dcc54f14b74c7ec6a5e64f87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Bacterial Infections
181 rdf:type schema:DefinedTerm
182 Nfead166e2547495680db418f9a0206dd schema:name Springer Nature - SN SciGraph project
183 rdf:type schema:Organization
184 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
185 schema:name Biological Sciences
186 rdf:type schema:DefinedTerm
187 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
188 schema:name Microbiology
189 rdf:type schema:DefinedTerm
190 sg:person.0633104206.69 schema:affiliation grid-institutes:grid.261112.7
191 schema:familyName Lewis
192 schema:givenName K.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633104206.69
194 rdf:type schema:Person
195 grid-institutes:grid.261112.7 schema:alternateName Department of Biology, Northeastern University, 02459, Boston, MA, USA
196 schema:name Department of Biology, Northeastern University, 02459, Boston, MA, USA
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...