2008
AUTHORS ABSTRACTStaphylococcus epidermidis and Staphylococcus aureus are the most frequent causes of nosocomial infections and infections on indwelling medical devices, which characteristically involve biofilms. Recent advances in staphylococcal molecular biology have provided more detailed insight into the basis of biofilm formation in these opportunistic pathogens. A series of surface proteins mediate initial attachment to host matrix proteins, which is followed by the expression of a cationic glucosamine-based exopolysaccharide that aggregates the bacterial cells. In some cases, proteins may function as alternative aggregating substances. Furthermore, surfactant peptides have now been recognized as key factors involved in generating the three-dimensional structure of a staphylococcal biofilm by cellcell disruptive forces, which eventually may lead to the detachment of entire cell clusters. Transcriptional profiling experiments have defined the specific physiology of staphylococcal biofilms and demonstrated that biofilm resistance to antimicrobials is due to gene-regulated processes. Finally, novel animal models of staphylococcal biofilm-associated infection have given us important information on which factors define biofilm formation in vivo. These recent advances constitute an important basis for the development of anti-staphylococcal drugs and vaccines. More... »
PAGES207-228
Bacterial Biofilms
ISBN
978-3-540-75417-6
978-3-540-75418-3
http://scigraph.springernature.com/pub.10.1007/978-3-540-75418-3_10
DOIhttp://dx.doi.org/10.1007/978-3-540-75418-3_10
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1010961510
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/18453278
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Microbiology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Biofilms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Staphylococcal Infections",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Staphylococcus",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratory of Human Bacterial Pathogenesis, The National Institutes of Health, Hamilton, MT, USA",
"id": "http://www.grid.ac/institutes/grid.94365.3d",
"name": [
"Laboratory of Human Bacterial Pathogenesis, The National Institutes of Health, Hamilton, MT, USA"
],
"type": "Organization"
},
"familyName": "Otto",
"givenName": "M.",
"id": "sg:person.0753532737.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753532737.80"
],
"type": "Person"
}
],
"datePublished": "2008",
"datePublishedReg": "2008-01-01",
"description": "Staphylococcus epidermidis and Staphylococcus aureus are the most frequent causes of nosocomial infections and infections on indwelling medical devices, which characteristically involve biofilms. Recent advances in staphylococcal molecular biology have provided more detailed insight into the basis of biofilm formation in these opportunistic pathogens. A series of surface proteins mediate initial attachment to host matrix proteins, which is followed by the expression of a cationic glucosamine-based exopolysaccharide that aggregates the bacterial cells. In some cases, proteins may function as alternative aggregating substances. Furthermore, surfactant peptides have now been recognized as key factors involved in generating the three-dimensional structure of a staphylococcal biofilm by cellcell disruptive forces, which eventually may lead to the detachment of entire cell clusters. Transcriptional profiling experiments have defined the specific physiology of staphylococcal biofilms and demonstrated that biofilm resistance to antimicrobials is due to gene-regulated processes. Finally, novel animal models of staphylococcal biofilm-associated infection have given us important information on which factors define biofilm formation in vivo. These recent advances constitute an important basis for the development of anti-staphylococcal drugs and vaccines.",
"editor": [
{
"familyName": "Romeo",
"givenName": "Tony",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-540-75418-3_10",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": {
"isbn": [
"978-3-540-75417-6",
"978-3-540-75418-3"
],
"name": "Bacterial Biofilms",
"type": "Book"
},
"keywords": [
"gene-regulated processes",
"biofilm formation",
"transcriptional profiling experiments",
"host matrix proteins",
"three-dimensional structure",
"staphylococcal biofilms",
"matrix proteins",
"molecular biology",
"profiling experiments",
"bacterial cells",
"biofilm-associated infections",
"surface proteins",
"biofilm resistance",
"specific physiology",
"opportunistic pathogen",
"staphylococcal biofilm-associated infections",
"recent advances",
"protein",
"biofilms",
"surfactant peptides",
"cell clusters",
"initial attachment",
"detailed insight",
"novel animal model",
"biology",
"exopolysaccharide",
"physiology",
"pathogens",
"expression",
"cells",
"vivo",
"Staphylococcus epidermidis",
"important basis",
"animal models",
"peptides",
"formation",
"Staphylococcus aureus",
"important information",
"anti-staphylococcal drugs",
"advances",
"key factors",
"insights",
"infection",
"basis",
"factors",
"clusters",
"attachment",
"resistance",
"development",
"antimicrobials",
"disruptive forces",
"epidermidis",
"structure",
"aureus",
"process",
"experiments",
"substances",
"frequent cause",
"information",
"drugs",
"detachment",
"nosocomial infections",
"cause",
"vaccine",
"model",
"series",
"force",
"medical devices",
"cases",
"devices"
],
"name": "Staphylococcal Biofilms",
"pagination": "207-228",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1010961510"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-540-75418-3_10"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"18453278"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-540-75418-3_10",
"https://app.dimensions.ai/details/publication/pub.1010961510"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:27",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_126.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-540-75418-3_10"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75418-3_10'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75418-3_10'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75418-3_10'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75418-3_10'
This table displays all metadata directly associated to this object as RDF triples.
154 TRIPLES
23 PREDICATES
102 URIs
94 LITERALS
12 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-540-75418-3_10 | schema:about | N1a6004d6fae8471d8a296311819dd1eb |
2 | ″ | ″ | N2efd5a4ebf85460986888aec6fb4d7b4 |
3 | ″ | ″ | N70d24b1ee1a340dfba3e98694fccc96d |
4 | ″ | ″ | Nb57b4d9b254f4b96947c737e906c5e51 |
5 | ″ | ″ | anzsrc-for:06 |
6 | ″ | ″ | anzsrc-for:0601 |
7 | ″ | ″ | anzsrc-for:0605 |
8 | ″ | schema:author | N0f5838ea3f4a4cec97f34ce0a726f70b |
9 | ″ | schema:datePublished | 2008 |
10 | ″ | schema:datePublishedReg | 2008-01-01 |
11 | ″ | schema:description | Staphylococcus epidermidis and Staphylococcus aureus are the most frequent causes of nosocomial infections and infections on indwelling medical devices, which characteristically involve biofilms. Recent advances in staphylococcal molecular biology have provided more detailed insight into the basis of biofilm formation in these opportunistic pathogens. A series of surface proteins mediate initial attachment to host matrix proteins, which is followed by the expression of a cationic glucosamine-based exopolysaccharide that aggregates the bacterial cells. In some cases, proteins may function as alternative aggregating substances. Furthermore, surfactant peptides have now been recognized as key factors involved in generating the three-dimensional structure of a staphylococcal biofilm by cellcell disruptive forces, which eventually may lead to the detachment of entire cell clusters. Transcriptional profiling experiments have defined the specific physiology of staphylococcal biofilms and demonstrated that biofilm resistance to antimicrobials is due to gene-regulated processes. Finally, novel animal models of staphylococcal biofilm-associated infection have given us important information on which factors define biofilm formation in vivo. These recent advances constitute an important basis for the development of anti-staphylococcal drugs and vaccines. |
12 | ″ | schema:editor | Ne13d40b440d3426dab11c425b368a814 |
13 | ″ | schema:genre | chapter |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | true |
16 | ″ | schema:isPartOf | Nc02d13592273497b8555d17cb0d62c0d |
17 | ″ | schema:keywords | Staphylococcus aureus |
18 | ″ | ″ | Staphylococcus epidermidis |
19 | ″ | ″ | advances |
20 | ″ | ″ | animal models |
21 | ″ | ″ | anti-staphylococcal drugs |
22 | ″ | ″ | antimicrobials |
23 | ″ | ″ | attachment |
24 | ″ | ″ | aureus |
25 | ″ | ″ | bacterial cells |
26 | ″ | ″ | basis |
27 | ″ | ″ | biofilm formation |
28 | ″ | ″ | biofilm resistance |
29 | ″ | ″ | biofilm-associated infections |
30 | ″ | ″ | biofilms |
31 | ″ | ″ | biology |
32 | ″ | ″ | cases |
33 | ″ | ″ | cause |
34 | ″ | ″ | cell clusters |
35 | ″ | ″ | cells |
36 | ″ | ″ | clusters |
37 | ″ | ″ | detachment |
38 | ″ | ″ | detailed insight |
39 | ″ | ″ | development |
40 | ″ | ″ | devices |
41 | ″ | ″ | disruptive forces |
42 | ″ | ″ | drugs |
43 | ″ | ″ | epidermidis |
44 | ″ | ″ | exopolysaccharide |
45 | ″ | ″ | experiments |
46 | ″ | ″ | expression |
47 | ″ | ″ | factors |
48 | ″ | ″ | force |
49 | ″ | ″ | formation |
50 | ″ | ″ | frequent cause |
51 | ″ | ″ | gene-regulated processes |
52 | ″ | ″ | host matrix proteins |
53 | ″ | ″ | important basis |
54 | ″ | ″ | important information |
55 | ″ | ″ | infection |
56 | ″ | ″ | information |
57 | ″ | ″ | initial attachment |
58 | ″ | ″ | insights |
59 | ″ | ″ | key factors |
60 | ″ | ″ | matrix proteins |
61 | ″ | ″ | medical devices |
62 | ″ | ″ | model |
63 | ″ | ″ | molecular biology |
64 | ″ | ″ | nosocomial infections |
65 | ″ | ″ | novel animal model |
66 | ″ | ″ | opportunistic pathogen |
67 | ″ | ″ | pathogens |
68 | ″ | ″ | peptides |
69 | ″ | ″ | physiology |
70 | ″ | ″ | process |
71 | ″ | ″ | profiling experiments |
72 | ″ | ″ | protein |
73 | ″ | ″ | recent advances |
74 | ″ | ″ | resistance |
75 | ″ | ″ | series |
76 | ″ | ″ | specific physiology |
77 | ″ | ″ | staphylococcal biofilm-associated infections |
78 | ″ | ″ | staphylococcal biofilms |
79 | ″ | ″ | structure |
80 | ″ | ″ | substances |
81 | ″ | ″ | surface proteins |
82 | ″ | ″ | surfactant peptides |
83 | ″ | ″ | three-dimensional structure |
84 | ″ | ″ | transcriptional profiling experiments |
85 | ″ | ″ | vaccine |
86 | ″ | ″ | vivo |
87 | ″ | schema:name | Staphylococcal Biofilms |
88 | ″ | schema:pagination | 207-228 |
89 | ″ | schema:productId | N17ee0e5338924c84b228d040a7ae0ebd |
90 | ″ | ″ | N3b95a9933a0643b885a3a6c0c1b64e01 |
91 | ″ | ″ | N4af42e373ba6471cae3a07ce48871aff |
92 | ″ | schema:publisher | N0fff8538e0854e7baa39c0eac46e9c76 |
93 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1010961510 |
94 | ″ | ″ | https://doi.org/10.1007/978-3-540-75418-3_10 |
95 | ″ | schema:sdDatePublished | 2022-06-01T22:27 |
96 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
97 | ″ | schema:sdPublisher | N64afbc353f2d4f9a866524fa0da93607 |
98 | ″ | schema:url | https://doi.org/10.1007/978-3-540-75418-3_10 |
99 | ″ | sgo:license | sg:explorer/license/ |
100 | ″ | sgo:sdDataset | chapters |
101 | ″ | rdf:type | schema:Chapter |
102 | N0f5838ea3f4a4cec97f34ce0a726f70b | rdf:first | sg:person.0753532737.80 |
103 | ″ | rdf:rest | rdf:nil |
104 | N0fff8538e0854e7baa39c0eac46e9c76 | schema:name | Springer Nature |
105 | ″ | rdf:type | schema:Organisation |
106 | N17ee0e5338924c84b228d040a7ae0ebd | schema:name | pubmed_id |
107 | ″ | schema:value | 18453278 |
108 | ″ | rdf:type | schema:PropertyValue |
109 | N1a6004d6fae8471d8a296311819dd1eb | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
110 | ″ | schema:name | Humans |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | N2efd5a4ebf85460986888aec6fb4d7b4 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
113 | ″ | schema:name | Staphylococcus |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | N3b95a9933a0643b885a3a6c0c1b64e01 | schema:name | doi |
116 | ″ | schema:value | 10.1007/978-3-540-75418-3_10 |
117 | ″ | rdf:type | schema:PropertyValue |
118 | N4af42e373ba6471cae3a07ce48871aff | schema:name | dimensions_id |
119 | ″ | schema:value | pub.1010961510 |
120 | ″ | rdf:type | schema:PropertyValue |
121 | N64afbc353f2d4f9a866524fa0da93607 | schema:name | Springer Nature - SN SciGraph project |
122 | ″ | rdf:type | schema:Organization |
123 | N70d24b1ee1a340dfba3e98694fccc96d | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
124 | ″ | schema:name | Biofilms |
125 | ″ | rdf:type | schema:DefinedTerm |
126 | Nb57b4d9b254f4b96947c737e906c5e51 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
127 | ″ | schema:name | Staphylococcal Infections |
128 | ″ | rdf:type | schema:DefinedTerm |
129 | Nc02d13592273497b8555d17cb0d62c0d | schema:isbn | 978-3-540-75417-6 |
130 | ″ | ″ | 978-3-540-75418-3 |
131 | ″ | schema:name | Bacterial Biofilms |
132 | ″ | rdf:type | schema:Book |
133 | Nd7ded88f936e43389a71f4b02163c617 | schema:familyName | Romeo |
134 | ″ | schema:givenName | Tony |
135 | ″ | rdf:type | schema:Person |
136 | Ne13d40b440d3426dab11c425b368a814 | rdf:first | Nd7ded88f936e43389a71f4b02163c617 |
137 | ″ | rdf:rest | rdf:nil |
138 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
139 | ″ | schema:name | Biological Sciences |
140 | ″ | rdf:type | schema:DefinedTerm |
141 | anzsrc-for:0601 | schema:inDefinedTermSet | anzsrc-for: |
142 | ″ | schema:name | Biochemistry and Cell Biology |
143 | ″ | rdf:type | schema:DefinedTerm |
144 | anzsrc-for:0605 | schema:inDefinedTermSet | anzsrc-for: |
145 | ″ | schema:name | Microbiology |
146 | ″ | rdf:type | schema:DefinedTerm |
147 | sg:person.0753532737.80 | schema:affiliation | grid-institutes:grid.94365.3d |
148 | ″ | schema:familyName | Otto |
149 | ″ | schema:givenName | M. |
150 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753532737.80 |
151 | ″ | rdf:type | schema:Person |
152 | grid-institutes:grid.94365.3d | schema:alternateName | Laboratory of Human Bacterial Pathogenesis, The National Institutes of Health, Hamilton, MT, USA |
153 | ″ | schema:name | Laboratory of Human Bacterial Pathogenesis, The National Institutes of Health, Hamilton, MT, USA |
154 | ″ | rdf:type | schema:Organization |