Data-Distributions in PowerList Theory View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

Virginia Niculescu

ABSTRACT

PowerList theory is well suited to express recursive, data-parallel algorithms. Its abstractness is very high and ensures simple and correct design of parallel programs. We try to reconcile this high level of abstraction with performance by introducing data-distributions into this theory. One advantage of formally introducing distributions is that it allows us to evaluate costs, depending on the number of available processors, which is considered as a parameter. The analysis of the possible distributions for a certain function may also lead to an improvement in the design decisions. Another important advantage is that after the introduction of data-distributions, mappings on real parallel architectures with limited number of processing elements can be analyzed. Case studies for Fast Fourier transform and rank-sorting are given. More... »

PAGES

396-409

References to SciGraph publications

Book

TITLE

Theoretical Aspects of Computing – ICTAC 2007

ISBN

978-3-540-75290-5
978-3-540-75292-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-540-75292-9_27

DOI

http://dx.doi.org/10.1007/978-3-540-75292-9_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045899214


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Babe\u0219-Bolyai University", 
          "id": "https://www.grid.ac/institutes/grid.7399.4", 
          "name": [
            "Faculty of Mathematics and Computer Science, Babe\u015f-Bolyai University, Cluj-Napoca"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niculescu", 
        "givenName": "Virginia", 
        "id": "sg:person.011400403653.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011400403653.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0167-6423(95)00015-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001544036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/197320.197356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007737646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:supe.0000022570.15441.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010663671", 
          "https://doi.org/10.1023/b:supe.0000022570.15441.77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002360050174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010677428", 
          "https://doi.org/10.1007/s002360050174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/280277.280278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016135635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6423(99)00027-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029133149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-74884-4_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030317655", 
          "https://doi.org/10.1007/978-3-642-74884-4_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129626495000175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062907869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pmmp.1993.315549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094597066"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "PowerList theory is well suited to express recursive, data-parallel algorithms. Its abstractness is very high and ensures simple and correct design of parallel programs. We try to reconcile this high level of abstraction with performance by introducing data-distributions into this theory. One advantage of formally introducing distributions is that it allows us to evaluate costs, depending on the number of available processors, which is considered as a parameter. The analysis of the possible distributions for a certain function may also lead to an improvement in the design decisions. Another important advantage is that after the introduction of data-distributions, mappings on real parallel architectures with limited number of processing elements can be analyzed. Case studies for Fast Fourier transform and rank-sorting are given.", 
    "editor": [
      {
        "familyName": "Jones", 
        "givenName": "Cliff B.", 
        "type": "Person"
      }, 
      {
        "familyName": "Liu", 
        "givenName": "Zhiming", 
        "type": "Person"
      }, 
      {
        "familyName": "Woodcock", 
        "givenName": "Jim", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-540-75292-9_27", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-75290-5", 
        "978-3-540-75292-9"
      ], 
      "name": "Theoretical Aspects of Computing \u2013 ICTAC 2007", 
      "type": "Book"
    }, 
    "name": "Data-Distributions in PowerList Theory", 
    "pagination": "396-409", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-540-75292-9_27"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "daa377ff9cb3ec6c82e433457b4d32dc8771390ccf030c33c8269a3ca2415579"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045899214"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-540-75292-9_27", 
      "https://app.dimensions.ai/details/publication/pub.1045899214"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T05:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99818_00000003.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-540-75292-9_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75292-9_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75292-9_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75292-9_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-540-75292-9_27'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-540-75292-9_27 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N0d2e5f9abb9e48a8bdb1944d943f7742
4 schema:citation sg:pub.10.1007/978-3-642-74884-4_5
5 sg:pub.10.1007/s002360050174
6 sg:pub.10.1023/b:supe.0000022570.15441.77
7 https://doi.org/10.1016/0167-6423(95)00015-1
8 https://doi.org/10.1016/s0167-6423(99)00027-1
9 https://doi.org/10.1109/pmmp.1993.315549
10 https://doi.org/10.1142/s0129626495000175
11 https://doi.org/10.1145/197320.197356
12 https://doi.org/10.1145/280277.280278
13 schema:datePublished 2007
14 schema:datePublishedReg 2007-01-01
15 schema:description PowerList theory is well suited to express recursive, data-parallel algorithms. Its abstractness is very high and ensures simple and correct design of parallel programs. We try to reconcile this high level of abstraction with performance by introducing data-distributions into this theory. One advantage of formally introducing distributions is that it allows us to evaluate costs, depending on the number of available processors, which is considered as a parameter. The analysis of the possible distributions for a certain function may also lead to an improvement in the design decisions. Another important advantage is that after the introduction of data-distributions, mappings on real parallel architectures with limited number of processing elements can be analyzed. Case studies for Fast Fourier transform and rank-sorting are given.
16 schema:editor Nc1a953dc1e7a488683b12e2d7329cae9
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N7d21b2d6665b4424a4f5165f88a9eda2
21 schema:name Data-Distributions in PowerList Theory
22 schema:pagination 396-409
23 schema:productId N00816e7fb9a64ee9b752e2dee6b76ded
24 N832f109774bb4aadbc5f220642d686ed
25 Nfd53c895e0ff42a9b955c7016ac6435e
26 schema:publisher Nf1a942f7eba14b4b883d3fe956305895
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045899214
28 https://doi.org/10.1007/978-3-540-75292-9_27
29 schema:sdDatePublished 2019-04-16T05:33
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N7c95defc18094dde8c1a763280c5971e
32 schema:url https://link.springer.com/10.1007%2F978-3-540-75292-9_27
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N00816e7fb9a64ee9b752e2dee6b76ded schema:name dimensions_id
37 schema:value pub.1045899214
38 rdf:type schema:PropertyValue
39 N0d2e5f9abb9e48a8bdb1944d943f7742 rdf:first sg:person.011400403653.54
40 rdf:rest rdf:nil
41 N4ffecd3d4ca148b2b2206fe4ad856605 schema:familyName Jones
42 schema:givenName Cliff B.
43 rdf:type schema:Person
44 N77cc2362573744b9a2b8d9de59027a4c rdf:first Nec1a1645c1cd41439602cdb00d6ab84a
45 rdf:rest N93267a25272a404eb73ff07600d3df17
46 N7a688cc3c504479290f6f18d25d8e325 schema:familyName Woodcock
47 schema:givenName Jim
48 rdf:type schema:Person
49 N7c95defc18094dde8c1a763280c5971e schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N7d21b2d6665b4424a4f5165f88a9eda2 schema:isbn 978-3-540-75290-5
52 978-3-540-75292-9
53 schema:name Theoretical Aspects of Computing – ICTAC 2007
54 rdf:type schema:Book
55 N832f109774bb4aadbc5f220642d686ed schema:name doi
56 schema:value 10.1007/978-3-540-75292-9_27
57 rdf:type schema:PropertyValue
58 N93267a25272a404eb73ff07600d3df17 rdf:first N7a688cc3c504479290f6f18d25d8e325
59 rdf:rest rdf:nil
60 Nc1a953dc1e7a488683b12e2d7329cae9 rdf:first N4ffecd3d4ca148b2b2206fe4ad856605
61 rdf:rest N77cc2362573744b9a2b8d9de59027a4c
62 Nec1a1645c1cd41439602cdb00d6ab84a schema:familyName Liu
63 schema:givenName Zhiming
64 rdf:type schema:Person
65 Nf1a942f7eba14b4b883d3fe956305895 schema:location Berlin, Heidelberg
66 schema:name Springer Berlin Heidelberg
67 rdf:type schema:Organisation
68 Nfd53c895e0ff42a9b955c7016ac6435e schema:name readcube_id
69 schema:value daa377ff9cb3ec6c82e433457b4d32dc8771390ccf030c33c8269a3ca2415579
70 rdf:type schema:PropertyValue
71 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
72 schema:name Economics
73 rdf:type schema:DefinedTerm
74 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
75 schema:name Applied Economics
76 rdf:type schema:DefinedTerm
77 sg:person.011400403653.54 schema:affiliation https://www.grid.ac/institutes/grid.7399.4
78 schema:familyName Niculescu
79 schema:givenName Virginia
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011400403653.54
81 rdf:type schema:Person
82 sg:pub.10.1007/978-3-642-74884-4_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030317655
83 https://doi.org/10.1007/978-3-642-74884-4_5
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/s002360050174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010677428
86 https://doi.org/10.1007/s002360050174
87 rdf:type schema:CreativeWork
88 sg:pub.10.1023/b:supe.0000022570.15441.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010663671
89 https://doi.org/10.1023/b:supe.0000022570.15441.77
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0167-6423(95)00015-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001544036
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/s0167-6423(99)00027-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029133149
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1109/pmmp.1993.315549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094597066
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1142/s0129626495000175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062907869
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1145/197320.197356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007737646
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1145/280277.280278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016135635
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.7399.4 schema:alternateName Babeș-Bolyai University
104 schema:name Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...